
Neural Feature Learning for Engineering Problems
Xiangxiang Xu, Lizhong Zheng, Ishank Agrawal

Abstract—Using deep neural networks as elements of engineer-
ing solutions can potentially enhance the overall performance
of the system. However, most existing practices that use DNNs
as black boxes make integrating DNN modules in engineering
systems hard. In this paper, we address one of such difficulties: in
engineering solutions, we often look for parameterized solutions
that perform well in a collection of scenarios. In most problems,
this means the DNN modules are trained and used in different
environments. Instead of using a transfer learning or multi-task
learning formulation, which are common in the literature, we
argue that such problems are intrinsically about the multi-variate
dependence between the data, the label, and the environment
parameters. Using an example of symbol detection over wireless
fading channels with interference, we demonstrate that such
problems can generally be solved as a modal decomposition.
We develop new metrics to measure the information contents of
features and some basic neural network architectures to perform
geometric operations in the space of feature functions. With these
building blocks, we discuss the steps to build a receiver that does
not require any online training but can adapt to different fading
scenarios when given the channel state information (CSI). We use
the symbol detection problem as an example to discuss some key
issues and steps to include DNN modules in complex engineering
systems.

I. INTRODUCTION

Deep neural networks (DNN) and, more generally, learning-
based techniques are natural choices to extend our solutions
to engineering problems. In complex engineering systems,
conventional model-based analytical solutions often find real-
istic models with non-linear, non-stationary, and non-Gaussian
elements intractable. In such cases, DNN modules, which
can approximate non-linear functions and have powerful stan-
dardized implementations, can be good options for extending
the functionality or improving the performance. One such
example is the current initiative of AI-native solutions for
5G/6G communication systems [1].

There are, however, some fundamental difficulties in includ-
ing DNN modules as parts of engineering solutions. Most
existing practices use DNNs as black boxes, which cannot
offer performance guarantees commonly required in engineer-
ing problems, often require extensive computational power and
training time, and, in most cases, cannot effectively incorporate
the domain knowledge about the specific applications.

In this paper, we address one of the issues in using DNNs
in engineering problems: the neural network is often trained
in a scenario different from where it is deployed.

We will use one specific symbol detection problem in fading
channels as an example to illustrate our key ideas. In this
problem, our goal is to determine the transmitted symbol from

*This research is supported by ONR Grant N00014-19-1-2621
X. Xu (xuxx@mit.edu), L. Zheng (lizhong@mit.edu), and I.

Agrawal (ishank@mit.edu) are with the Dept. EECS at MIT.

the received signals, which is a typical classification setup.
However, the wireless channel can be affected by several
factors: the transmitted signal power, the modulation scheme,
the propagation loss, the fading environment, etc. The variation
of the environment is characterized by a set of commonly used
parameters, including the SNR and the fading coefficients.
These parameters are collectively known as channel state
information (CSI), which is known to the receiver through
control channel coordination or an online pilot estimation
procedure. Furthermore, the statistical distributions of these
varying parameters are well-known and specified in wireless
communication standards. Thus, the symbol detector we need
to design has both the received signals and the CSI parameters
as the input. Such situations where we need parameterized
processing are very common in engineering applications. This
paper will develop the general concepts and procedures re-
quired to address such problems by focusing on the symbol
detection problem as an example.

The challenge of the above problem is that the ideal receiver
behaves rather differently as the channel parameters change.
A brute-force solution is to train a neural network with both
the received signals and the parameters as inputs. This is often
unsatisfactory since ensuring the neural network follows the
parameter to cover all possible cases is difficult, resulting in
oversized DNNs and high training costs. In practice, it is more
common that the neural network is first trained offline with
data generated from one fading case or mixed samples from a
collection of cases. When the system is put online, a smaller
set of online samples is used to adapt the neural network to
the target scenario. This can be viewed as a transfer learning
approach. Since the online samples are often expensive, the
adaptability of this method is limited.

In this work, we view the core issue of the receiver design
problem as learning a 3-way dependence between the received
signal, the transmitted symbol, and the channel parameter
unknown at the training time. We establish a framework for
explicitly learning features from data samples to capture this
statistical dependence. To this end, we introduce a geometry
on functional space. We then formulate the feature learning
problem as finding a good low-rank approximation of the
dependence model, with approximation error measured by the
distance in the functional space. We then develop a nested
DNN architecture to perform basic geometric operations in
feature function space, such as making orthogonal projections.
This method allows us to use separate neural network modules
to learn informative features of the received signals that are
parameter-invariant and parameter-dependent. We then can
assemble these learned modules to form the optimal receiver.
The key advantage of our method is that it separates the

dependence on the channel parameters. The parameter value
explicitly controls the receiver behavior without requiring
any online training. Conceptually, if we understand DNN
as learning statistical models with the internal weights as
parameters, then our approach forces some of these parameters
to be aligned with the channel parameters that humans use to
characterize different environments, such that our knowledge
of the value of the channel parameters can be used without
re-estimated.

In the following, we will first, in Section II, establish the
mathematical structure of feature functional space and its re-
lation to neural network approximations. In particular, in II-E,
we will introduce the nested architecture to decompose multi-
variate dependence. After that, we will discuss our example
of symbol detection in section III. The main contribution of
this work is to develop a general method to design DNN
modules that can utilize the available structural knowledge
of the problem and, hence, can be integrated as a part of a
large engineering system. The key concepts are the geometric
information metrics and the DNN-based geometric operations
to learn and approximate complex statistical dependence. We
will summarize these ideas at the end of this paper.

II. FEATURE SPACE AND MODEL APPROXIMATION

A. Feature Functions, Feature Space, and Joint Functions

For a random variable Z, we use Z to denote the corre-
sponding alphabet, and use z to denote a specific value in Z .
We use PZ to denote the probability distribution of Z, PZ to
denote the collection of probability distributions supported on
Z , and relint(PZ) to denote the relative interior of PZ . We
refer to real-valued functions f : Z → R as feature functions
on Z , and we refer to feature space FZ as the collection of
such feature functions. We define the inner product on FZ as

⟨f1, f2⟩
∆
= ER [f1(Z)f2(Z)] (1)

where R ∈ relint(PZ) is referred to as the metric distribution.
To simplify the notation, once the metric distribution R is
chosen, we shift every feature function to have ER [f(Z)] =
0,∀f . With a little abuse of the notation, we still refer to
the collection of such zero-mean feature functions FZ . This
defines FZ as a Hilbert space. The related geometric concepts
will be frequently used in this paper, including the induced
notions of subspace, rank, norm, projection, etc.1

In this paper, we use this geometric structure to describe
the dependence between random variables. For a given joint
distribution PXY ∈ relint(PX×Y), we consider the function
iX;Y ∈ FX×Y with

iX;Y(x, y) =
PX,Y(x, y)

PX(x)PY(y)
− 1, ∀x, y (2)

which is referred to as the canonical dependence kernel
(CDK). We use the product distribution RXY = PX · PY as

1In most cases, the choice of the metric distribution is clear from the
context. Thus, we will not specify that from the notation, although one should
note that the results might change if we choose a different metric distribution.

the metric distribution for FX×Y . The “−1” in the definition
ensures that iX;Y is always centered, i.e., has zero-mean w.r.t.
the metric distribution.

It is clear that there is a one-to-one correspondence between
PXY and iX;Y. We refer to either one as a given “model” and try
to describe the dependence between the two random variables
defined by this model. In particular, we consider the two
marginal function spaces, FX ,FY , with metric distributions
RX = PX, RY = PY resp. For given f ∈ FX , g ∈ FY , we use
f⊗g to denote their product ((x, y) 7→ f(x) · g(y)) ∈ FX×Y ,
and refer to such functions as product functions. Each product
function γ ∈ FX×Y can be written as

γ = σ · (f ⊗ g), (3)

where σ = ∥γ∥ ≥ 0, and f ∈ FX , g ∈ FY satisfy ∥f∥ =
∥g∥ = 1. We refer to (3) as the standard form of product
functions. More generally, for given k-dimensional features
f = [f1, . . . , fk]

T ∈ Fk
X and g = [g1, . . . , gk]

T ∈ Fk
Y , we

use the tensor notation to write the joint function f ⊗ g
∆
=∑k

i=1 fi ⊗ gi. When we evaluate the function value, we write
(f ⊗ g)(x, y) =

∑k
i=1 fi(x) · gi(y) = f(x) · g(y), as the dot

product of two vectors in Rk.

B. Modal Decomposition and Low-rank Approximation

We start with defining the following operations on joint
functions.

Definition 1 (Modal Decomposition). For a given FX×Y , we
define operator ζ on FX×Y as the optimal rank-1 approxima-
tion

ζ(γ)
∆
= arg min

γ′ : γ′=f⊗g
f∈FX ,g∈FY

∥γ − γ′∥2 , γ ∈ FX×Y . (4)

In addition, for all k ≥ 1, we define the operator ζk as
ζ1

∆
= ζ, and

ζk(γ)
∆
= ζ

(
γ −

k−1∑
i=1

ζi(γ)

)
,

which we refer to as the k-th mode of γ. Then, we use
ζ≤k(γ)

∆
=
∑k

i=1 ζi(γ) and rk(γ)
∆
= γ − ζ≤k(γ) to denote

the superposition of the top k modes and the corresponding
remainder, respectively.

For a given model iX;Y, the decomposition above finds an
approximate model as ζ≤k(iX;Y), which is the sum of the first
k modes. This approximate form has some desired properties.
We write in the standard form (see (3)) as

ζ≤k(iX;Y) =

k∑
i=1

σi · (f∗
i ⊗ g∗i) (5)

and the corresponding joint distribution as

P̃
(k)
XY = PXPY · (1 + ζ≤k(iX;Y))

= PXPY ·

(
1 +

k∑
i=1

σi · (f∗
i ⊗ g∗i)

)
(6)

(5) can be viewed as a singular value decomposition (SVD)
in the functional space, which has a desired orthogonality
property that

〈
f∗
i , f

∗
j

〉
=
〈
g∗i , g

∗
j

〉
= δij . Furthermore, it can

be verified that

E
P̃

(k)
XY

[
f∗
i (X) · g∗j (Y)

]
= σi · δij

That is, under the approximate model P̃
(k)
XY , the dependence

between X and Y can be fully specified as k parallel one-to-
one correlation between feature pairs f∗

i (X) and g∗i (Y), i =
1, . . . , k. This is desirable for inference problems. For exam-
ple, to estimate the value of g∗i (Y), the corresponding feature
f∗
i (X) is a sufficient statistic. Moreover, as the correlation

coefficients σi’s have a descending order, when we need to
approximate the true model but are constrained by the number
of features to use, it makes sense to take the first k modes as
in (5).

It is worth mentioning that the standard form in (5) is
chosen purely for convenience. In particular, the condition
that feature functions are orthonormal is often unnecessary in
practice. In this paper, we are interested in finding a low-rank
approximation to a given model,

min
f1,...,fk∈FX
g1,...,gk∈FY

∥∥∥∥∥iX;Y −

(
k∑

i=1

fi ⊗ gi

)∥∥∥∥∥
2

(7)

The optimizers of (7) are not unique. Any set of features
(f1, . . . , fk) that span the same subspace as (f∗

1 , . . . , f
∗
k) in

(5) has a corresponding feature set (g1, . . . , gk) that yield the
same sum. We call the resulting model ĩ

(k)
X;Y =

∑
i fi ⊗ gi

the rank-k approximation of iX;Y. We reserve the term modal
decomposition only for the solution of (5) where the features
are ordered and orthonormal.

C. The Local Approximation

In related works [2], [3], the modal decomposition problem
is often considered with an extra “local assumption”. While
we do NOT require this assumption in the rest of this paper,
it is worthwhile to briefly cover some of the ideas that are
helpful to develop intuitions on our results.

Roughly speaking, the local assumption asserts that the
probability distribution should be “close” to the metric dis-
tribution so that, for example, the density ratio function in
(2) can be well approximated by log(PXY/PXPY, which is
the point-wise mutual information and a common way to
describe dependence. The local approximation means that the
model PXY is close to the product distribution PXPY, i.e., the
dependence between X and Y is weak.

Under this assumption, the geometric concepts we defined
are well connected with some classical information theoretic
measures and concepts. For example, it can be shown that
the inner product (1) becomes the Fisher information; squared
distance in FZ is approximately proportional to the K-L
divergence, with the special case that 1

2∥iX;Y∥
2 ≈ I(X;Y);

the collection of models with rank k (5) approximates a k-
dimensional exponential family; and the model approximation

problem (7) becomes a divergence minimization, or, an ML
fitting problem.

Such connections can be conceptually useful when we in-
terpret geometric operations in feature space with information-
theoretic language. For example, a rank-k model in (6) would
satisfy that I(X;Y) ≈ 1

2 ∥iX;Y∥
2
= 1

2

∑k
i=1 σ

2
i . This can be

read as decomposing the total dependence between X and Y
as the sum of the strengths of individual modes. In a related
way, one can also interpret the optimization problem (7) as
choosing a set of k most “informative” features.

One can establish many other connections and correspon-
dence with the local approximation assumption. There is
extensive literature on this topic, which is surveyed in some
of our earlier papers [2]. In this work, we will not expand on
this topic. We will proceed without the local assumption in
our development. We will, however, take for granted that the
optimization (7) yields “desirable” features.

D. Learn Features From Data

The optimization (7) is a useful tool for feature learning.
The optimal choice of k-dimensional features is considered
“informative” and can be used instead of the high-dimensional
raw data in inference tasks. In practice, we often cannot access
the true model iX;Y. In such cases, the empirical model of the
training dataset is used instead.

Figure 1 shows a diagram of solving this optimization for
a classification problem with a finite Y , using the common
deep neural network (DNN) settings. Here, we represent all
the layers of the DNN up to the final classification layer as a
module to select f . The final layer consists of links connecting
the output of f to each class Y = y, with weight g(y) and
bias b(y). We denote the collection of these parameters as g =
[g(1), . . . , g(|Y|)] ∈ Rk×|Y| and b = [b(1), . . . , b(|Y|)]T ∈
R|Y|. This layer forms a linear combination of features f(x) ·
g(y) + b(y) for each y. Suppose we use a linear (identity)
activation function; the output of the network is î(x, y)

∆
=

f(x) · g(y)+ b(y) and is used as an approximation to the true
model iX;Y. From (2), this is equivalent as using

P̃
(f,g,b)
Y|X (y|x) = PY(y) · (1 + f(x) · g(y) + b(y))

to approximate the true model PY|X. The choice of the bias
values b(·) can be thought of as canceling the non-zero mean
of g(Y) w.r.t. PY so that the result is a valid distribution. Now
if an appropriate L2 loss function is used, we can readily train
this network to find the f, g that solves (7). Some experimental
results verifying the fact that DNN learning results coincide
with the solution of (7) are reported in our previous works [2].
In practice, a non-linear activation function such as softmax
can be used, and cross-entropy loss is often chosen instead of
an L2 loss. These can be viewed either as approximations or
variations of (7). We will not expand on how to make these
choices in this paper.

This observation, however, reveals a structural limitation of
DNNs. The feature function of Y is represented as weights on
individual links and only applies when Y takes discrete and

σ(·)g

b

X ◦ f P̃
(f,g,b)
Y|X

Figure 1: Deep neural network unit to compute low rank
approximation (7).

Hf gX ◦ Y◦

Figure 2: An H-Score Network: X and Y samples are processed
separately by the f and g modules, which represent DNN
modules chosen for the specific application; the outputs feature
f(X), g(Y) are used to evaluate the H-score, which then used
to adjust the DNN modules through backpropagation.

finite values. A more flexible approach is to use a concept
called the H-score [4].

Definition 2 (H-Score). Given k ≥ 1 and f ∈ Fk
X , g ∈ Fk

Y ,
the H-score H (f, g) is defined as

H (f, g)
∆
=

1

2

(
∥iX;Y∥2 − ∥iX;Y − f ⊗ g∥2

)
(8)

= E
[
fT (X)g(Y)

]
− 1

2
· trace (ΛfΛg) , (9)

where Λf
∆
= E

[
f(X)fT (X)

]
and Λg

∆
= E

[
g(Y)gT (Y)

]
,

respectively.

By definition, when the model iX;Y is given, maximizing
the H-score is equivalent to minimizing the approximation
error in (7). There are some advantages of using the H-score
maximization. First, from (9), the H-score can be computed
from expectations. This can be naturally replaced by empirical
averages in learning problems, where we cannot access the
model but have a collection of samples. Figure 2 gives an
illustration of this operation.

Secondly, the H-score directly measures the quality of fea-
tures instead of borrowing the performance metrics of specific
inference tasks. This means that the H-score maximization
can operate even if the X − Y dependence is weak and the
reconstruction of the labels is difficult for DNNs. Moreover,
the following property says that the value of the H-score has
its information-theoretic upper bounds and the maximal value
has direct operational meanings.

Property 3. Given k ≥ 1 and f ∈ Fk
X , g ∈ Fk

Y , we have

H (f, g) ≤ 1

2

∥∥ζ≤k(iX;Y)
∥∥2 =

1

2

k∑
i=1

σ2
i (10)

with σi
∆
= ∥ζi(iX;Y)∥ for i = 1, . . . , k, where the inequality

holds with equality if and only if f ⊗ g = ζ≤k(iX;Y).

The most important advantage of the H-score maximization
is that X and Y are processed separately without any restriction

iX;Y π⊥(iX;Y)

π(iX;Y)

f̄ ⊗FY

.

Figure 3: Orthogonal decomposition of the CDK function
iX;Y .

on the forms of these variables. This allows direct control
of individual feature functions and flexible choices of DNN
modules. It turns out that this fact is critical in applying DNN
to engineering problems.

E. Nested H-Score Networks

In this section, we consider a variation of (7),

min
f∈Fk

X ,g∈Fk
Y :f⊥f̄

∥iX;Y − f ⊗ g∥2 (11)

where f̄ is a given feature function in FX . 2

The difference is that we would like to select features that
are orthogonal to the given ϕ. There are many such examples
that arise from applications where we have domain knowledge
that restricts the search space of feature functions. There are
also many options to work with the constraint. The most
commonly used way is to include a regulator in the loss
function. One can also choose the DNN module for selecting f
to satisfy certain constraints. For example, CNN and RNN can
be viewed as such specialized modules. Here, our goal is to
use this example to demonstrate the flexibility of the H-score-
based architecture. We will develop a nested architecture to
perform the general projection operation in the feature space.

Our solution starts with changing Figure 2 by replacing the
f module with the known feature function f̄ . We can still train
the feature function for Y to maximize the H-score. This can
be written as the optimization problem

ḡ∗ = arg min
ḡ∈FY

∥∥iX;Y − f̄ ⊗ ḡ
∥∥2 (12)

This optimization searches for approximate model in {γ =
f̄ ⊗ ḡ : ḡ ∈ FY}, which is clearly a linear subspace of FX×Y .
We denote the resulting projection as π(iX;Y) = f̄ ⊗ ḡ∗, in
Figure 3.

Now we observe that the approximation error, denoted as
π⊥(iX;Y) in Figure 3, is orthogonal to the subspace. This
implies that if we further find low-rank approximation to

2To simplify notation, we do not use different notations to distinguish a
single feature function and a collection of feature functions since there is
no conceptual difference in our development. We will continue to use the
notation f ⊗ g =

∑
i fi ⊗ gi without specifying the dimensionality of f, g.

When f̄ ∈ Fm
X for some m > 1, the orthogonality constraint means that

every element of f is orthogonal to every f̄ , or span(f) ⊥ span(f̄).

H

H

f̄ ḡ

f g++ ++[
f̄
f

] [
ḡ
g

]

• •

X ◦ Y◦• •• •

Figure 4: Nested H-Score Network for Projection of Feature
Functions.

π⊥(iX;Y), all the features we find must be orthogonal to f̄ .
Mathematically, the optimal solution of

f∗, g∗ = arg min
f∈FX ,g∈FY

∥∥∥∥∥∥∥
(
iX;Y − f̄ ⊗ ḡ∗

)︸ ︷︷ ︸
π⊥(iX;Y)

−f ⊗ g

∥∥∥∥∥∥∥
2

(13)

= arg min
f∈FX ,g∈FY

∥∥iX;Y − (f̄ ⊗ ḡ∗ + f ⊗ g)
∥∥2 (14)

must satisfy that f∗ ⊥ f̄ , and is the solution to the problem
with constraint (11). Finally, we observe that in (14), the
problem is equivalent to approximating iX;Y by two pairs of
feature functions (f̄ , ḡ∗) and (f, g), which gives rise to the
nested H-score network shown in Figure 4.

The architecture in Figure 4 can be understood as the
following. First, we train the upper branch, with the f̄ module
frozen as the given constraint function. This allows the ḡ
module to optimize at ḡ∗ defined in (12). The symbol “++”

denotes “concatenation” to form features
[
f̄
f

]
and

[
ḡ
g

]
, which

are optimized through the lower branch to solve (14). In
practice, we do not wait for the upper branch optimization to
converge but run the entire network together, which requires
computing the sum of the two H-scores in each iteration. When
this process converges, we get the desired optimal feature f∗

that satisfies the orthogonality constraint.
Compared to the other existing methods to solve the con-

strained optimization problem (11), the nest H-score method
is based on a systematic approach to make projections in the
feature space. In the next section, we will use an example
to illustrate that this concept can be generalized to learning
problems with more complex dependence structures.

III. CASE STUDY: RECEIVER WITH SIDE INFORMATION

A. The Symbol Detection Problem

In this section, we consider a problem of symbol detection
in fading channels with interference as follows.

Y = h1 · X1 + h2 · X2 +W (15)

where X1 ∈ {+1,−1} is the BPSK transmitted signal that we
wish to detect; X2 is the symbol transmitted by an interferer,
taking value equally likely from the 16-QAM constellation; W
is the additive Gaussian noise with distribution CN (0, σ2

W),

Figure 5: Two cases of the optimal decision functions: the sum
of the transmitted signal and the interference h1X1 + h2X2,
without the additive noise, are shown on the left; the red and
blue color represent the two hypotheses we need to decide on;
the received signal follows the mixture Gaussian distribution
with these points as centers. The right side shows the color-
coded contour of the decision function.

with the variance inversely proportional to the average signal-
to-noise ratio (SNR); h1, h2 ∈ C are the fading coefficients
for the target transmitter and the interferer, resp.; and Y is
the received signal. We assume the channel state information
(CSI), S = (h1, h2,SNR), follows a known distribution PS.
The realization S = s is known at the receiver. Our goal is to
design a receiver that can decide the value of X1 based on the
received signal.

This is a well-studied problem in communications. The
optimal MAP decision rule evaluates the sign of the likelihood
ratio log

(
PY|(X1=+1),S(y|s)/PY|(X1=−1),S(y|s)

)
. Each likeli-

hood is a mixture Gaussian distribution

PY|X1,S(y|x1, s) =
∑

x2∈16QAM

1

16
· CN (y;h1x1 + h2x2, σ

2
W)

where CN (·;µ, σ2) denotes the complex Gaussian density
with the given mean and variance. Figure 5 shows two
examples of this decision function.

While the optimal receiver is not difficult to derive analyt-
ically, implementing such functions in practice can be cum-
bersome because of the non-linearity of these functions and
because the optimal decision is rather sensitive to parameter
changes. DNNs are a desirable implementation option since,
in principle, they can universally approximate all non-linear
functions with standardized hardware and software packages.
It is indeed not difficult to train a neural network to form
near-optimal decisions, even for the highly non-linear case in

Shared Layers

Task-specific Layers

Feature
Extractor

Y Inference X̂
g(Y)

S = (h1, h2,SNR)

Figure 6: (a) Multi-task Learning; (b) Learning with Side-
information

the figure. The real challenge in this problem is that we need
not just the optimal decision maker for an isolated scenario,
but rather a parameterized optimal solution. That is, when we
change the system parameters, the CSI, at the receiver, we
want to have the optimal receiver for all cases corresponding to
the different CSI values. It is unclear what data we should use
to train the neural network, and how to control the behavior
of the neural network with the given parameters. The same
difficulty exists in a wide variety of engineering problems. We
will use this problem as an example to illustrate how to solve
such problems with the nested H-score network proposed in
the previous section.

In the learning literature, the problem is related to a multi-
task learning setting [5], [6], shown in Figure 6-(a). The neural
network is organized as several shared layers followed by
some task-specific layers. The shared layers can be trained
offline, often with simulated samples drawn from a mixture of
all fading environments. The task-specific layers are used to
tune the decoder to work with the specific fading environment,
i.e. for the given CSI value. Consequently, these task-specific
layers must be trained with online samples drawn from the
case of interest. In practice, the online samples are expensive
since they are the transmitted and the received signals over
the wireless channel. This creates a tension that limits the
adaptability of the overall system. Particularly since we oper-
ate DNNs as black boxes and do not have a way to measure
how well the decoder can adapt to the specific fading scenario,
the performance of such solutions can be hard to predict.

The classical information-theoretic treatment of the problem
is as a receiver with side-information problem shown in Figure
6(b). 3 One can intuitively think the processing of the received
signal Y as extracting useful information to make decisions
on X̂ in presence of the side-information S. This relation is
represented as the chain rule of information:

I(Y; (S,X)) = I(Y;S) + I(Y;X|S) (16)

where we can only hope to decode the information from the
second conditional term. In the context of coded transmissions,
the chain rule has clear operational meanings associated with
joint typically decoding and random binning techniques. Here,
our goal is to find the operations corresponding to the chain
rule in the context of learning the model of X,S,Y, where

3Different from the previous notation, we start at this point to use Y, the
received signal, as the input to our system.

we would like to find informative features that can be used to
make inferences with the given side information.

B. Decomposition of Multivariate Dependence

Using the concepts of modal decomposition developed in
Section II, we would like to learn features to approximate
the dependence between the received signal Y and the pair of
random variables S,X. We consider the model CDK iY;(S,X) ∈
FY×S×X . We choose the metric distribution as R = PY ·PSX.
In order to separate the two parts of information in the chain
rule (16), we consider the following optimization problem

πM(iY;(S,Y))
∆
= arg min

î∈FY×S×X :
Y−S−X

∥iY;(S,Y) − î∥2 (17)

where the constraint is that the approximate model î corre-
sponds to a joint distribution P̂YSX that satisfies the Markov
relation Y − S − X. That is, under P̂YSX, Y depends on the
pair (S,X) only through S alone.

Next, we observe that the collection of models î satisfying
the Markov relation forms a linear subspace in FY×S×X ,
since the function î(y, s, x) for any y, s, x does not depend
on x, which is a linear constraint. (17) can thus be viewed
as a projection to a linear subspace, depicted in Figure 7.
We thus can understand the projection πM(iY;(S,X)) as the
“Markov component” of the given model. Following the
intuition of the chain rule (16), we denote the approximation
error as πC(iY;(S,X)), which is understood as the “conditional
dependence” component of the given model.

iY;(S,X) πC(iY;(S,X))

πM(iY;(S,X))

i : Y − S− X

.

Figure 7: Decomposition of Multivariate Dependence

If we are willing to take the extra assumption that the
dependence between Y and (S,X) is weak, i.e., the model
PYSX is close to the product distribution R = PY · PSX,
which we take as the metric distribution, it can be further
established that I(Y;S) ≈ 1

2∥πM(iY;(S,X))∥2, and I(Y;X|S) ≈
1
2∥πC(iY;(S,X))∥. We thus can view the optimization (17) and
Figure 7 as the operational meaning of the chain rule (16)
in the functional space FY×S×X: the two parts of the overall
dependence are separated into two orthogonal subspaces.

This operation is indeed similar to what we discussed in sec-
tion II-E, which can be learned with a nested-H-score network
directly from data samples, as shown in Figure 8. In the figure,
the upper link learns a pair of functions ḡ ∈ FY , f̄ ∈ FS , such
that ḡ⊗ f̄ is a good approximation of the Markov component
πM(iY;(S,X)), which captures the dependence between Y and

H

H

ḡ f̄

g f++ ++[
ḡ
g

] [
f̄
f

]

• •

Y ◦

S◦

X◦++

••

[
S
X

]

•

Figure 8: Nesting architecture for decomposition of multi-
variate dependence

S. The lower link learns g ∈ FY , f ∈ FS×X so that
g⊗ f approximates the conditional element πC(iY;(S,X)). This
captures the information in Y complementary to the part
carried by ḡ, i.e., the part that cannot be inferred from the
side information S alone.

C. Feature Assembling and Inference Models

The nested H-score network in Figure 8 learns feature
functions f̄ , ḡ, f, g to have the following approximations:

PSY(s, y) ≈ PS(s) · PY(y) · (1 + f̄(s) · ḡ(y))
PXSY(x, s, y) ≈ PX(x)PS(s) · PY(y)

· (1 + f̄(s) · ḡ(y) + f(s, x) · g(y)) (18)

where we used the fact that S, the CSI, and X, the transmitted
symbol, are independent in this symbol detection problem.
Maximizing the H-scores in this network is equivalent to
minimizing the L2 distances in these approximations. Once
the training process converges, we can assemble the resulting
neural network modules to make our desired detector. In this
case, we hope to predict the value of X from the observation
of Y and the side information S, thus we use (18) to form an
approximation

P̂X|YS(x|y, s)
∆
= PX(x) ·

(
1 + f̄(s) · ḡ(y) + f(x, s) · g(y)

1 + f̄(s) · ḡ(y)

)
(19)

This can be evaluated with the observed value of y, s and all
possible values of x (binary in this case), and the maximizer
is chosen as the decision.

Remark. We did not specify the choices of all four neural
network modules, which impose constraints on the dimension-
ality and the expressive power and dictate how well the ap-
proximations are. One major advantage of this method is that
the training process can be carried out offline with simulated
data samples. There is no need to use any online samples
to adapt the receiver to the specific fading environment. Our
knowledge of the fading environment is summarized in the
form of estimated channel parameters and directly entered
into the solution as inputs to feature functions. This alleviates
the tension of using expensive online samples in practice and
allows us to choose more powerful neural network modules
with more extensive training. The result is what we usually
have with model-based methods: a parameterized solution that
performs well in all situations whenever we give it the right
value of the parameters.

Figure 9: The decision functions in a few cases: the learned
function varies with the channel parameters.

The specific way to decompose the dependence between Y
and the pair of random variables (S,X) into the Markov and
the conditional components is not critical in our design. Other
ways to approximate the joint distribution by feature functions
might also work. For example, one could directly approximate
the model iY;(S,X) with g(Y) · f(S,X), without separating the
two components; and use Bayes’ rule to assemble the learned
features to a decision maker.

Our decomposition has the additional advantage that g(Y)
does not carry information about the side information S. If
we have a distributed processing problem where we need to
restrict the information volume of the output of the front-end
processing of the received signal Y, or if we would like to
avoid leaking information about S for some security reason,
the choice of feature function g(·) in our design would be
ideal. In practice, it is observed that such decomposed neural
network modules are easier to train compared to directly
learning the overall multivariate model. Conceptually, it is
valuable to separate the contribution of different variables in
a multivariate dependence.

Figure 9 shows the learned decision function at a few
different CSI values. The left column shows the theoretical
optimal decision function in these cases in comparison to
the decision function assembled with the neural network
modules following (19). One can observe that the centers
of the Gaussian mixtures are all decided correctly (with the

Figure 10: The BER performance of the learned decision
maker.

correct color). More importantly, the learned decision function
can follow the theoretical optimal as the CSI value changes.
This is achieved without any retraining with online samples.
The information about the specific realization of the fading
environment is provided only with the CSI value.

As expected, being able to use non-linear functions in
the receivers correctly helps to improve the performance,
particularly when the interference is strong. Figure 10 shows
the bit error rate achieved with our design. When the SINR is
low, the model using our approach has a significant advantage
over the linear receivers, i.e. threshold after the optimal linear
processing.

IV. CONCLUDING REMARKS

In this paper, we reported some of our latest practice of us-
ing neural networks as a component of an engineering system
to utilize the computation power and the capability of non-
linear processing to improve the overall system performance.
We believe such goals are shared by a wide range of current
research efforts in different engineering areas. There are also
some shared difficulties in these practices, mainly due to the
fact that DNNs are usually used as black boxes, giving us
insufficient control and performance metrics to fully integrate
DNNs into the existing engineering solutions. We hope that
the study case of symbol detection in this paper can shed some
light on overcoming this difficulty in more general contexts.

Specifically, we found the following general principles are
helpful in adopting DNNs in engineering designs.

First, to “open the black box”, we should not always train
a neural network as a classifier and try to use it as a classifier.
In our approach, neural network modules are trained to learn
certain feature functions. f, g in Figure 2 and f̄ , ḡ, f, g in
Figure 8. These feature functions are well-defined from the
corresponding optimization problems, and thus, each comes
with clear operational meanings. We then have a separate
“assembling” process to put these learned feature functions
together for a specific inference task, such as in (19). In the
more basic setting (7), we can use the learned f, g features to
either estimate the value of Y with the input X, or reversely

estimate X from Y. This separation between the learning
process and the use of the learning results at the level of
feature functions provides the critical flexibility that we need
in engineering problems.

Second, having quality metrics for features is instrumental
to operating on feature functions. Current practices using
DNNs often “borrow” task-specific performance metrics to
encourage the neural networks to learn informative features.
If we can correctly predict the value of Y with a neural
network, then the internal processing of this neural network
must take the right information. This logic is not wrong but
very inflexible, making it hard to move a neural network that
works well for one task to work for another. Conceptually,
even if X and Y are weakly dependent, such that we cannot
decide, with a desirable accuracy, the value of Y from the
value of X, the strongest dependence mode between the two
is still well-defined and should be accessible when we have
enough samples. The H-score is one way to directly define
a quality metric of feature functions, which can be evaluated
with data samples. Conceptually, it allows us to solve the low-
rank approximation problem (7) regardless of how close the
resulting approximation can be.

Third, the operations on feature functions are, by nature,
high-dimensional geometric operations. The key concepts and
operations we discussed in this paper all have geometric mean-
ings on FZ , such as inner product, projections, subspaces, etc.
We believe this is the key reason that when we use scalar-
valued metrics to describe the operations of neural networks,
either a task-specific loss function or an information-theoretic
quantity like mutual information, it is often hard to get the
complete picture. This effect is more prominent in multivariate
problems where the statistical dependence gets more complex.
We thus consider developing geometry-based analysis tools the
right move for understanding these problems.

REFERENCES

[1] W. Yu, F. Sohrabi, and T. Jiang, “Role of deep learning in wireless
communications,” IEEE BITS the Information Theory Magazine, vol. 2,
no. 2, pp. 56–72, 2022.

[2] S.-L. Huang, X. Xu, and L. Zheng, “An information-theoretic approach to
unsupervised feature selection for high-dimensional data,” IEEE Journal
on Selected Areas in Information Theory, vol. 1, no. 1, pp. 157–166,
2020.

[3] X. Xu and L. Zheng, “A geometric framework for neural feature learning,”
arXiv:2309.10140, 2023.

[4] X. Xu, S.-L. Huang, L. Zheng, and G. W. Wornell, “An information
theoretic interpretation to deep neural networks,” Entropy, vol. 24, no. 1,
p. 135, 2022.

[5] R. Caruana, “Multitask learning: A knowledge-based source of inductive
bias1,” in Proceedings of the Tenth International Conference on Machine
Learning, pp. 41–48, Citeseer, 1993.

[6] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

