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Abstract— In this paper, we introduce an approach to de-
compose statistical dependence and learn informative features
from sequential data. We first present a sequential decom-
position of dependence, which extends the chain rule of
mutual information. To learn this decomposition from data,
we investigate the optimal feature representations associated
with decomposed dependence modes and develop corresponding
learning algorithms. Specifically, for stationary processes, we
demonstrate applications of the learned features in computing
optimal Markov approximation and testing the order of Markov
processes.

I. INTRODUCTION

Many learning applications involve data points collected
presented in a meaningful order, such as natural language
texts, DNA sequences, and time series. To effectively pro-
cess such data, many algorithms have been proposed for
exploiting the sequential structure in the data. One classical
approach is based on probabilistic modeling of the data, as
Markov model or hidden Markov models [1], [2], and then
estimate model parameters. In contrast to the explicit model-
ing, another common practice is designing neural networks
with new architectures to address the sequential structure, of
which most notable examples include recurrent neural net-
work [3], LSTM (long short-term memory) network [4], and
the recent transformer model [5]. With the advance of deep
learning techniques, these deep models have demonstrates
the effectiveness in processing high-dimensional sequential
data, particularly for natural languages. Despite of their
empirical successes, the connection between learned models
and the statistical dependence of data is unclear, making it
difficult to analyze the learning processes and trained models.

On the other hand, theoretical analyses of sequential
dependence focus on simple probability models with known
forms, e.g., the discrete information source model [6] and
the dependence decomposition framework with information
geometry [7]. However, practical sequential data are typically
structured and high-dimensional, with unknown probabil-
ity distributions, limiting the application of such analyzes.
Recent developments in information-theoretic and statistical
analyzes have established a connection between statistical
dependence and feature space, which bridges dependence
structure and feature learning [8], [9]. Specifically, com-
prehensive discussions on statistical dependence for two
variables have been presented in [8], [9], and were further
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extended to a trivariate setting for learning conditional de-
pendence components [10].

In this paper, our goal is to analyze sequential depen-
dence and designing algorithms to effectively learn such
dependence from data. To this end, we first extend the
feature learning framework introduced in [10] to the se-
quential setup, where we present a sequential decomposition
of dependence. We show that this decomposition can be
interpreted as an generalization of the chain rule of mutual
information. We further introduce the informative features to
represent decomposed dependence components, and design
learning algorithms by applying the nesting technique pro-
posed in [10]. In particular, the resulting learning objective
is a nested H-score for sequential data, which is an extension
of both the original H-score [11], [9], and the nested H-score
for learning conditional dependence [10]. We further discuss
the application of the learning algorithms, by considering
feature learning from stationary processes. Specifically, we
demonstrate that the learned features can be used in comput-
ing Markov approximations, and decide the order of Markov
processes.

II. NOTATIONS AND PRELIMINARIES

A. Feature Geometry

1) Vector Space: Given an inner product space with inner
product 〈·, ·〉 and its induced norm ‖ · ‖, we can define the
projection and orthogonal complement as follows.

Definition 1. Give a subspace W of V, we denote the
projection of a vector v ∈ V onto W by Π (v;W) ,
arg min
w∈W

‖v − w‖2. In addition, we use V�W to denote the

orthogonal complement of W in V, viz., V � W , {v ∈
V : 〈v, w〉 = 0 for all w ∈W}.

We use “�” to denote the direct sum of orthogonal
subspaces, i.e., V = V1�V2 indicates that V = V1 +V2 and
V1 ⊥ V2. Therefore, we have V2 = V�V1 if V = V1�V2.
In addition, if W is a subspace of V, then V = W�(V�W).

Fact 1 (Orthogonality Principle). Given v ∈ V and a
subspace W of V, then w = Π (v;W) if and only if w ∈W

and v − w ∈ V�W.

2) Feature Space: Given an alphabet Z, we use PZ to
denote the collection of probability distributions supported
on Z, and use relint(PZ) to denote the relative interior of PZ,
i.e., the collection of distributions in PZ that have positive
probability masses.

For given Z, we use FZ , {Z → R} to denote the
collection of features (functions) of Z. For each k ≥ 1, we



use F k
Z , (FZ)

k
= {Z→ Rk} to denote the collection of k-

dimensional features. Specifically, we use F∅ to represent the
collection of constant features. Given f1, . . . , fk ∈ FZ, for
each i = 1, . . . , k, we denote the multidimensional feature(
z 7→ (f1(z), . . . , fi(z))

T
)
∈ F i

X by f[i]. We also denote
Λf , E

[
f(Z)fT(Z)

]
for feature f : Z→ Rk.

Moreover, given a distribution R ∈ relint(PZ), we define
the inner product on FZ as 〈f1, f2〉 , ER [f1(Z)f2(Z)],
which induces the norm ‖f‖ ,

√
〈f, f〉. We will refer to

the distribution R as the metric distribution.
3) Joint Function: Given alphabets X,Y and a metric

distribution RX,Y ∈ relint(PX×Y), FX×Y is composed
of all joint functions of x and y. In particular, for given
f ∈ FX, g ∈ FY, we use f ⊗ g to denote their product
((x, y) 7→ f(x) · g(y)) ∈ FX×Y, and refer to such features
as product functions. Suppose γ ∈ FX×Y is a product
function, there exist f ∈ FX, g ∈ FY and σ ≥ 0 such that
γ = σ · (f ⊗ g), with σ = ‖γ‖ and ‖f‖ = ‖g‖ = 1. We will
refer to σ · (f ⊗ g) as the standard form of γ. In addition,
for given f1, . . . , fk ∈ FX and g1, . . . , gk ∈ FY, we denote
f[k] ⊗ g[k] ,

∑k
i=1 fi ⊗ gi.

Note that by extending each f = (x 7→ f(x)) ∈ FX to
((x, y) 7→ f(x)) ∈ FX×Y, FX can be regarded as a subspace
of FX×Y, with the metric distribution being the marginal
distribution RX of RX,Y . We denote the resulting orthogonal
complement as FY|X , FX×Y � FX.

We can establish a correspondence between distribution
space and feature space by the density ratio functions.

Definition 2. Given a metric distribution R ∈ relint(PZ),
for each P ∈ PZ, we define the (centered) density ratio
function ˜̀

P ;R ∈ FZ as

˜̀
P ;R(z) ,

P (z)−R(z)

R(z)
, for all z ∈ Z.

When there is no ambiguity about metric distribution R,
we will simply use ˜̀

P to denote ˜̀
P ;R. In particular, for given

(X,Y ) ∼ PX,Y , we will use iX;Y , ˜̀
PX,Y ;PXPY to denote

the induced density ratio, and refer to it as the canonical
dependence kernel (CDK) function. The CDK function iX;Y

is also related to the information density ı̃X;Y (x, y) ,
log

PX,Y (x,y)
PX(x)PY (y) , where we have ı̃X;Y = log(1 + iX;Y ).

B. Modal Decomposition

We further investigate the relation between joint functions
in FX×Y and the features in FX and FY. For convenience,
we will assume all metric distributions used in the section
take the product form, i.e., RX,Y = RXRY .

We define the operator ζ on FX×Y as the optimal rank-1
approximation, i.e.,

ζ(γ) , arg min
γ′ : γ′=f⊗g
f∈FX,g∈FY

‖γ − γ′‖, for all γ ∈ FX×Y. (1)

In addition, for all k ≥ 1, we define the operator ζk as

ζ1 , ζ, and ζk(γ) , ζ

(
γ −

k−1∑
i=1

ζi(γ)

)
, which we refer to

as the k-th mode of γ. Then, we use ζ≤k(γ) ,
∑k
i=1 ζi(γ)

and rk(γ) , γ − ζ≤k(γ) to denote the superposition of the
top k modes and the corresponding remainder, respectively.

For each γ ∈ FX×Y, we define the rank of γ as rank(γ) ,
inf{k ≥ 0: ‖rk(γ)‖ = 0}. Let K , rank(γ), and suppose
ζi(γ) = σi (f∗i ⊗ g∗i ) denotes the standard form of ζi(γ) for
i = 1, . . . ,K. Then, we obtain

γ(x, y) =

K∑
i=1

σi · f∗i (x)g∗i (y) (2)

for all x ∈ X, y ∈ Y, where ‖f∗i ‖ = ‖g∗i ‖ = 1 and
σi = ‖ ζi(γ)‖. We refer to (2) as the modal decomposition
of γ, which can be regarded as a special case of Schmidt
decomposition [12], or singular value decomposition (SVD)
in functional space. Specifically, we have the following
property.

Property 1. Let K , rank(γ), then σ1 ≥ σ2 ≥ · · · ≥
σK > 0. In addition, for all i, j ∈ [K], we have1 〈f∗i , f∗j 〉 =
〈g∗i , g∗j 〉 = δij .

Moreover, we can express Eckart–Young–Mirsky theorem
[13] as follows.

Property 2. For all γ ∈ FX×Y and k ≥ 1, we have
ζ≤k(γ) = arg min

γ′ : rank(γ′)≤k
‖γ − γ′‖ = arg min

γ′ : γ′=f⊗g,
f∈F k

X, g∈F
k
Y

‖γ − γ′‖.

Therefore, we will refer to ζ≤k(γ) as the rank-k approx-
imation of γ, with the remainder rk(γ) representing the
approximation error. Then, we have γ = ζ≤k(γ) + rk(γ) =∑k
i=1 ζi(γ) + rk(γ).
The following variational characterization will also be

useful.

Property 3. For all i = 1, . . . , rank(γ), we have (f∗i , g
∗
i ) =

arg max
fi,gi

〈γ, fi⊗gi〉 where the maximization is taken over all

fi ∈ FX and gi ∈ FY with ‖fi‖ = ‖gi‖ = 1 and 〈fi, f∗j 〉 =
〈gi, g∗j 〉 = 0 for j = 1, . . . , i− 1.

C. Decomposition of Statistical Dependence

1) Bivariate Case: For any joint distribution PX,Y , with
the metric distribution RX,Y = PXPY , the modal decompo-
sition of iX,Y is also referred to as the modal decomposition
of the joint distribution PX,Y (cf. [8, Proposition 2]). Let the
decomposition be

ζi(iX;Y ) = σi · (f∗i ⊗ g∗i ), i = 1, . . . ,K, (3)
then the functions f∗i , g

∗
i correspond to the maximally cor-

related functions in FX and FY, known as Hirschfeld–
Gebelein–Rényi (HGR) maximal correlation functions [14],
[15], [16]. Specifically, for given f ∈ FX, g ∈ FY, let us
denote their covariance as

cov(f, g) , EPX,Y [f(X)g(Y )]− EPXPY [f(X)g(Y )] .
(4)

1We adopt the Kronecker delta notation

δij =

{
0 if i 6= j,

1 if i = j.



Note that since cov(f, g) = 〈iX;Y , f ⊗ g〉, we have the
following corollary of Property 3.

Corollary 1 (HGR Maximal Correlation Functions). For
all i = 1, . . . ,K, we have σi = cov(f∗i , g

∗
i ) =

EPX,Y [f∗i (X)g∗i (Y )] and (f∗i , g
∗
i ) = arg max

fi,gi

cov(fi, gi),

where the maximization is taken over all fi ∈ FX and
gi ∈ FY with ‖fi‖ = ‖gi‖ = 1 and 〈fi, f∗j 〉 = 〈gi, g∗j 〉 = 0
for j = 1, . . . , i− 1.

In addition, (3) can also be illustrated as a decomposition
of mutual information.

Lemma 1 ([8, Lemma 16]). If
∥∥iX,Y ∥∥ ≤ ε, then

I(X;Y ) =
1

2
·
∥∥iX,Y ∥∥2

+ o(ε2) =
1

2

K∑
i=1

σ2
i + o(ε2),

where K = rank(iX;Y ), and σi = ‖ ζi(iX;Y )‖.

The maximal correlation functions can be effectively ex-
tracted from data via maximizing the H-score [9], [11], and
its nested variant [10].

Definition 3. Given k ≥ 1 and f ∈ F k
X, g ∈ F k

Y , the H-score
H (f, g) is defined as

H (f, g) , E
[
fT(X)g(Y )

]
− (E [f(X)])

T E [g(Y )]

− 1

2
· tr (ΛfΛg) , (5)

where Λf , E
[
f(X)fT(X)

]
, Λg , E

[
g(Y )gT(Y )

]
. The

nested H-score2 H ?(f, g) is then defined as

H ?(f, g) ,
k∑
i=1

H (f[i], g[i]). (6)

From the relation
H (f, g) =

1

2

(∥∥iX;Y

∥∥2 − ‖iX,Y − f ⊗ g‖2
)
, (7)

we can obtain the following corollary of Property 2.

Proposition 1. Given f : X → Rk, g : Y → Rk, H (f, g) is
maximized if and only if f ⊗ g = ζ≤k(iX;Y ), and H ?(f, g)
is maximized if and only if fi ⊗ gi = ζi(iX;Y ), for all i =
1, . . . , k.

2) Trivariate Case: We briefly summarize trivariate de-
pendence decomposition results established in [10]. Given
(X,S, Y ) ∼ PX,S,Y , we set RX,S,Y = PXRS,Y as the
metric distribution, and define the conditional CDK function
iX;Y |S ∈ FX×S×Y as, for each x ∈ X, s ∈ S, y ∈ Y,

iX;Y |S(x, s, y) , iX;S,Y (x, s, y)− iX;S(x, s), (8)
which is analogous to3 the conditional information density

ı̃X;Y |S(x, y|s) , log
PX,Y |S(x, y|s)

PX|S(x|s)PY |S(y|s)
= ı̃X;S,Y (x, s, y)− ı̃X;S(x, s). (9)

Then, we have the following proposition.

2In general, we can define a nested H-score by aggregating different H-
scores, where with input features form a nested structure. See [17, Section
4.1] for detailed discussions.

3Unlike the obvious symmetry ı̃X;Y |S(x, y|s) = ı̃Y ;X|S(y, x|s), the
analogous relation iX;Y |S(x, s, y) = iY ;X|S(y, s, x) does not hold for
conditional CDK in general.

Proposition 2. We have iX;S = Π (iX;S,Y ;FX×S) , iX;Y |S ∈
FY|X×S and ‖iX;S,Y ‖2 = ‖iX;Y |S‖2 + ‖iX;S‖2. Specifically,
if ‖iX;S,Y ‖ = O(ε), then I(X;Y |S) = 1

2 ·‖iX;Y |S‖2 +o(ε2).

The following corollary is straightforward.

Corollary 2. The following statements are equivalent:
• ‖iX;S,Y ‖ = ‖iX;S‖;
• X,S, Y follow the Markov relation X − S − Y ;
• ‖iX;Y |S‖ = 0.

III. SEQUENTIAL DEPENDENCE DECOMPOSITION

We consider the dependence between Y and sequential
data (X1, . . . , Xn), where Y can be regarded as the target
variable. Without loss of generality, we assume Xi takes
values from Xi, for each i ∈ [n], and Y takes values from
Y, where we have defined [i : j] , {l ∈ Z : i ≤ l ≤ j} and
[n] , [1 : n]. For a subset I of [n], it will be convenient to
denote the sequence xI , (xi, i ∈ I), random variable XI

with the associated alphabet XI ,×i∈I Xi. Specifically, we
also denote xl , x[l] = (x1, . . . , xl).

We then devlop the decomposition of dependence between
Y and sequence Xn, characterized by their joint distribution
PY,Xn . To this end, we consider the function space FY×X[n]

with the metric distribution RY,Xn = PY PXn . The inner
product and geometry on FY×X[n]

are defined accordingly.
We chracterize our dependence decomposition as follows. A
proof is provided in Appendix A.

Proposition 3. For each l ∈ [n], we have the orthogonal
decomposition

iY ;Xl =

l∑
i=1

iY ;Xi|Xi−1 , (10)

where 〈iY ;Xi|Xi−1 , iY ;Xj |Xj−1〉 = 0 for all 1 ≤ i < j ≤ l,
and where we have defined X0 , ∅.

Note that Proposition 3 is an extension of Proposition 2
for trivariate case, which corresponds to the special case of
n = 2. Analogous to Corollary 2, we can readily conclude
the equivalence of (1) ‖iY ;Xi‖ = ‖iY ;Xi−1‖, (2) the Markov
relation Xi−Xi−1−Y , and (3) ‖iY ;Xi|Xi−1‖ = 0, for all i ∈
[2 : l]. Therefore, iY ;Xi|Xi−1 corresponds to the conditional
dependence between Y and Xi conditional on Xi−1.

In particular, the orthogonality of (10) implies the
Pythagorean relation

‖iY ;Xn‖2 =

n∑
i=1

‖iY ;Xi|Xi−1‖2, (11)

which can be regarded as the counterpart of the chain rule

I(Y ;Xn) =

n∑
i=1

I(Y ;Xi|Xi−1). (12)

To see the connection between (11) and (12), we consider a
local regime with ‖iY ;Xn‖ = O(ε). Then, for each i ∈ [n],
we have [cf. Lemma 1 and Proposition 2]

I(Y ;Xi|Xi−1) =
1

2
· ‖iY ;Xi|Xi−1‖2 + o(ε2). (13)

Therefore, with the decomposition (10), we can interpret
the chain rule of mutual information (11) as a Pythagorean



relation in functional space, where the conditional mutual
information corresponds to the length of functions. As we
will soon demonstrate, this functional view allows us to
develop effective algorithms to analyze the dependence and
learn informative features from data samples.

To establish the connection between dependence compo-
nents and features, we consider the modal decomposition. In
particular, let us define

Ki , rank(iY ;Xi|Xi−1) for all i ∈ [n], (14)
and suppose the modal decompositions of iY ;Xi|Xi−1 is

σ
[i]
j

(
g
∗[i]
j ⊗ f

∗[i]
j

)
= ζj(iY ;Xi|Xi−1), j ∈ [Ki] (15)

for each i ∈ [n], where we have f
∗[i]
j ∈ FX[i]

, g
∗[i]
j ∈ FY.

Then, we can show that g∗[i]j , f
∗[i]
j are the solutions of a

constrained extension of the maximal correlation problem
(cf. Corollary 1). A proof is provided in Appendix B.

Proposition 4. For each i ∈ [n], we have σ
[i]
j =

cov(g
∗[i]
j , f

∗[i]
j ) = EPY,Xi

[
g
∗[i]
j (Y )f

∗[i]
j (Xi)

]
, (g

∗[i]
j , f

∗[i]
j ) =

arg max
gj ,fj

cov(gj , fj), where cov denotes the covariance [cf.

(4)], and where the maximization is taken over all gj ∈ FY

and fj ∈ FXi|X[i−1]
that satisfy ‖gj‖ = ‖fj‖ = 1 and〈

gj , g
∗[i]
l

〉
=
〈
fj , f

∗[i]
l

〉
= 0 for l ∈ [j − 1]. (16)

The following corollary is immediate.

Corollary 3. For all i, i′ ∈ [n] and j, j′ ∈ [Ki], we have〈
f
∗[i]
j , f

∗[i′]
j′

〉
= δii′δjj′ . (17)

Therefore, the modal decomposition (15) gives a collection
of orthogonal features {f∗[i]j : i ∈ [n], j ∈ [Ki]} of Xn,
where for each i ∈ [n], the value f∗[i](xn) depends only
on xi.

IV. LEARNING ALGORITHMS

We then develop the algorithms for learning the condi-
tional dependence iY ;Xi|Xi−1 from data samples. To this end,
we apply the nesting technique introduced in [10], and extend
the H-scores [cf. (5) and (6)] to the sequential data.

Specifically, given feature dimensions k1, . . . , kn and n
feature pairs

{(
f [i], g[i]

)}n
i=1

with f [i] ∈ F ki
X[i]

, g[i] ∈ F ki
Y

for each i ∈ [n], we define

Hseq ,
n∑
i=1

H
(
f [[i]], g[[i]]

)
, (18)

H ?
seq ,H ?

(
f [[n]], g[[n]]

)
, (19)

as the H-score and its nested variant for sequential data,
respectively, where for each i ∈ [n], we have defined

f [[i]] , f [1] ++ · · ·++ f [i], (20a)

g[[i]] , g[1] ++ · · ·++ g[i], (20b)
where we have used the “++” symbol to indicate concatena-
tion of two vectors, i.e., we have v1 ++ v2 , [ v1v2 ] for two
column vectors v1, v2.

It is worth noting that if n = 1, the H-scores Hseq and
H ?

seq reduce to the original H-scores for two variables [cf.
(5) and (6)]; if n = 2, Hseq and H ?

seq reduce to the H-scores

introduced in [10] for learning conditional dependence of
three variables. The following result demonstrates that we
can effectively learn the dependence modes via maximizing
corresponding H-scores. A proof is provided in Appendix C.

Theorem 1. Suppose ki ≥ Ki for each i ∈ [n], with Ki as
defined in (14). Then for all f [i] ∈ F ki

X[i]
, and g[i] ∈ F ki

Y ,
Hseq is maximized if and only if

g[i] ⊗ f [i] = iY ;Xi|Xi−1 , for all i ∈ [n], (21)
and H ?

seq is maximized if and only if

g
[i]
j ⊗ f

[i]
j = ζj(iY ;Xi|Xi−1) (22)

for all i ∈ [n], j ∈ [ki].

In practice, we can compute Hseq using a nested neural
network structure as shown in Fig. 1, where filled blocks are
implemented by parameterized deep neural networks. Then,
the corresponding features can be obtained by optimizing the
parameters in networks to maximize the H-scores.

After learning the optimal features, we can readily obtain
the magnitude of each dependence mode, by exploiting the
following connection. A proof is provided in Appendix D.

Proposition 5. For given i ∈ [n] and ki-dimensional features
g[i] ∈ F ki

Y , f [i] ∈ F ki
X[i]

with g[i]⊗f [i] = iY ;Xi|Xi−1 , we have∥∥iY ;Xi|Xi−1

∥∥2
= EPY,Xi

[
g[i](Y )⊗ f [i](Xi)

]
. (23)

In addition, we can retrieve each (Xi;Y ) dependence from
the optimal features (21), via

iY ;Xi = g[[i]] ⊗ f [[i]], for all i ∈ [n],

where f [[i]], g[[i]] are as defined in (20). Therefore, we can
conveniently solve inference and estimation problem related
to Y by using the set of optimal features. Formally, we have
the following result, and the proof is omitted.

Proposition 6. Suppose we have ki-dimensional features
g[i] ∈ F ki

Y , f [i] ∈ F ki
X[i]

with g[i] ⊗ f [i] = iY ;Xi|Xi−1 for
each i ∈ [n]. Then, for each i ∈ [n], we have

PY |Xi(y|xi) = PY (y) ·
[
1 + g[[i]](y) · f [[i]](xn)

]
, (24)

and, for all ψ ∈ F d
Y ,

E
[
ψ(Y )|Xi = xi

]
= E [ψ(Y )] + Λψ,g[[i]] · f [[i]](xi) (25)

where Λψ,g[[i]] = E
[
ψ(Y )

(
g[[i]](Y )

)T]
.

V. STATIONARY PROCESSES

In this section, we consider the sequential dependence de-
composition problem for stationary processes. In particular,
we consider a process {Xn}n∈Z, i.e,

· · · , X−2, X−1, X0, X1, X2, · · ·
where each Xi take values from the same alphabet Xi = X.
We assume the process is m-th order stationary, i.e.,

PXi1 ,Xi2 ,...,Xim = PXi1+τ ,Xi2+τ ,...,Xim+τ (26)
for all i1 < · · · < im and τ ∈ Z.

It is of interest to characterize the dependence between
variable Xt at time t and the history of length l, i.e.,
(Xt−1, Xt−2, . . . , Xt−l). Specifically, we assume l ≤ m−1.
Then, due to the m-th order stationarity, it is with out



...

Hf [1] g[1]X1 ◦

Hf [2] g[2]X2 ◦

Hf [3] g[3]X3 ◦

Hf [n] g[n]Xn ◦

...
...

f [[1]] g[[1]]X[1]

++++ ++
f [[2]]X[2] g[[2]]

++++ ++
f [[3]]X[3] g[[3]]

++++ ++
f [[n]]X[n] g[[n]]

X[n−1] f [[n−1]] g[[n−1]]

• ••

• ••

Y◦••••

Hseq =
n∑
i=1

H
(
f [[i]], g[[i]]

)
Fig. 1. Nested neural network structure for learning the sequential dependency decomposition, where “++” denotes the concatenation operation of two
vectors. Each filled block represents a deep feature extractor with trainable parameters.

loss of generality to set the current time as t = 0. For
convenience, we introduce the notations

←−
X,←−x to denote the

reverse process and values, respectively: for all i ∈ Z, we
have

←−
Xi , X−i, ←−xi , x−i. Then, we can represent the past

l observations X[−l:−1] as
←−
X[l] = (

←−
X1, . . . ,

←−
Xl).

We then apply the decomposition established previously,
by replacing Y and X l = X[l] with

←−
X0 and

←−
X[l], respectively.

In particular, we establish the geometry on functional space
FX[0:l]

by defining the metric distribution
R←−
X[0:l]

, P←−
X0
P←−
X[l]

= PXP←−X[l]
, (27)

where we have denoted PX , PX0
.

Remark 1. It is worth noting that while XI = XI′ for index
sets I and I′ with |I| = |I′|, the induced spaces FXI

and
FXI′ generally have different geometries.

Let us denote the dependence between the current
←−
X0 and

the past l observations
←−
X[l] by i

[l]
seq ∈ FX[0:l]

, with i
[0]
seq , 0

and i
[l]
seq(
←−x [0:l]) , i←−

X0;
←−
X[l]

(←−x0,
←−x [l]) for l ≥ 1. Then, we can

obtain the conditional dependence at lag l by taking the first-
order difference i

∆[l]
seq , i

[l]
seq − i

[l−1]
seq = i←−

X0;
←−
Xl|
←−
X[l−1]

. To see
this, note that
i∆[l]
seq (←−x [0:l]) , i[l]seq(

←−x [0:l])− i[l−1]
seq (←−x [0:l−1])

= i←−
X0;
←−
X[l]

(←−x0,
←−x [l])− i←−

X0;
←−
X[l−1]

(←−x0,
←−x [l−1])

= i←−
X0;
←−
Xl|
←−
X[l−1]

(←−x0,
←−x [l−1],

←−x l).

This readily gives a decomposition of i[l]seq into conditional

dependencies of different lags, as

i[l]seq =

l∑
i=1

i∆[i]
seq , (28)

which is the counterpart of the orthogonal decomposition
(10).

Then, we can represent the dependence components using
learned features, by applying Theorem 1. Then we can use
the learned features for inference, or estimating the strength
of each dependence mode (cf. Proposition 5). In particular,
for each i ∈ [l], we can predict

←−
X0 by the previous i

observations, via (cf. Proposition 6)

P←−
X0|
←−
X[i]

(←−x0|←−x [i]) = PX(←−x0)
(

1 + i[i]seq(
←−x [0:i])

)
. (29)

A. Markov Approximation

Given process {Xn}n∈Z with m-th order stationarity [cf.
(26)], suppose we have learned dependence modes i

[i]
seq for

all i ∈ [m − 1] represented in features. Then, for each
i ∈ [m − 1], we can define a Markov process of order
i, of which the transition behaviors are specified by the
conditional distribution P←−

X0|
←−
X[i]

[cf. (29)]. It is easy to verify
that the resulting Markov process is also the optimal order-
i approximation of the original process, in the sense of
maximizing the likelihood function:

P←−
X0|
←−
X[i]

= arg max
Q←−
X0|
←−
X[i]

EP←−
X0,
←−
X[l]

[
logQ←−

X0|
←−
X[i]

(
←−
X0|
←−
X[i])

]
.

Therefore, by learning the dependence decomposition (32)
for l = m − 1 from {Xn}n∈Z, we obtain optimal order-i
Markov approximations of the original process, for all i ∈
[m− 1]. One straightforward application is to test the order



of Markov processes, which we illustrate as follows. A proof
is provided in Appendix E.

Proposition 7. Suppose {Xn}n∈Z is a Markov process of
order M , and is stationary, i.e., (26) holds for all m ≥ 1.
Then we have

M = max
{
i ≥ 1:

∥∥∥i∆[i]
seq

∥∥∥ > 0
}
. (30)

B. Joint Dependence and Decomposition

We then consider the joint dependence of variables in
{Xn}n∈Z of m-th order stationary. In particular, we char-
acterize as the density ratio between joint distribution and
marginal product. For given Xn = (X1, . . . , Xn), we denote
this ratio by

iXn(xn) ,
PXn(xn)∏n
i=1 PXi(xi)

− 1 (31)

Then, we have the following result. A proof is provided
in Appendix F.

Theorem 2. For all l ∈ [m− 1], we have

i←−
X[0:l]

(←−x [0:l]) =

l∏
i=1

(
1 + i[i]seq(

←−x [l−i:l])
)
− 1 (32)

Specifically, if
∥∥∥i←−
X[0:l]

∥∥∥ = O(ε), then we have

i←−
X[0:l]

(←−x [0:l]) =

l∑
i=1

i[i]seq(
←−x [l−i:l]) + o(ε) (33)

=

l∑
i=1

l−i∑
j=0

i∆[i]
seq (←−x [j:j+i]) + o(ε) (34)

Note that when
∥∥∥i←−
X[0:l]

∥∥∥ = O(ε), it will be more conve-

nient to use the product distribution R′←−
X[0:m]

,
∏
i∈[0:m] P←−Xi

as the metric distribution. In fact, it can be verified that such
replacement only induces an error of higher-order terms,
i.e., o(ε2). Then, the following result illustrates that the
decompositions (33) and (33) are orthogonal. A proof is
provided in Appendix G.

Lemma 2. We have〈
i[i]seq(
←−
X[l−i:l]), i

[i′]
seq(
←−
X[l−i′:l])

〉
R′

= 0 if i 6= i′,

and 〈
i∆[i]
seq (
←−
X[j:j+i]), i

∆[i′]
seq (

←−
X[j′:j′+i′])

〉
R′

= 0

if (i′, j′) 6= (i, j).

The following corollary of Theorem 2 is then immediate.

Corollary 4. If ‖i←−
X[0:l]
‖ = O(ε), we have∥∥∥i←−

X[0:l]

∥∥∥2

=

l∑
i=1

∥∥∥i[i]seq

∥∥∥2

+ o(ε2) (35)

=

l∑
i=1

(l + 1− i) ·
∥∥∥i∆[i]

seq

∥∥∥2

+ o(ε2) (36)

As a final remark, the above decompositions are also well-
connected to corresponding decompositions of information
density and information measures. Specifically, for given

Xn, let us define ı̃Xn(xn) , log PXn (xn)∏n
i=1 PXi (xi)

as the in-
formation density for Xn, then Watanabe’s total correlation
[18] of Xn is defined as C(Xn) , EX̂n∼PXn

[
ı̃Xn(X̂n)

]
.

The following result gives the counterparts of Theorem 2
and Corollary 4. We provide its proof in Appendix H for
completeness.

Proposition 8. For each l ∈ [m− 1], we have
ı̃←−
X[0:l]

(←−x [0:l])

=

l∑
i=1

ı̃←−
X0;
←−
X[i]

(←−x [l−i:l]) (37)

=

l∑
i=1

l−i∑
j=0

ı̃←−
X0;
←−
Xi|
←−
X[i−1]

(←−xj ,←−xi+j |←−x [j+1:i+j−1]), (38)

where the conditional information density is as defined in
(9). In addition, we have

C(
←−
X[0:l]) =

l∑
i=1

I(
←−
X0;
←−
X[i]) (39)

=

l∑
i=1

(l − i+ 1) · I
(←−
X0;
←−
Xi

∣∣∣←−X[i−1]

)
. (40)

APPENDIX

A. Proof of Proposition 3

From the definition of conditional CDK function [cf. (8)],
we have

iY ;Xi|Xi−1 = iY ;Xi − iY ;Xi−i for all i ∈ [l], (41)
where iY ;X0 = iY ;∅ = 0. Taking the sum on both sides of
over i ∈ [l], we obtain (10).

To establish the orthogonality, note that for i < j, we have
i ≤ j−1 and iY ;Xi|Xi−1 ∈ FY×X[i]

⊂ FY×X[j−1]
. In addition,

from Proposition 2, we have iY ;Xj |Xj−1 ∈ FXj |(Y×X[j−1]),
which implies that iY ;Xj |Xj−1 ⊥ FY×X[j−1]

3 iY ;Xi|Xi−1 .

B. Proof of Proposition 4

For all i ∈ [n], g ∈ FY and f ∈ FXi|X[i−1]
, from iY ;Xi =

iY ;Xi−1 + iY ;Xi|Xi−1 , we have
cov(g, f) = 〈iY ;Xi , g ⊗ f〉

= 〈iY ;Xi−1 , g ⊗ f〉+ 〈iY ;Xi|Xi−1 , g ⊗ f〉
= 〈iY ;Xi−1 , g ⊗ f〉, (42)

where the last equality follows from the fact that
iY ;Xi|Xi−1 ⊥ FY×X[i−1]

3 (g ⊗ f). Therefore, for each
j ≥ 1, the maximum value of cov(gj , fj) cannot exceed the
corresponding maximum value of 〈iY ;Xi−1 , gj ⊗ fj〉, under
the same sets of constraints.

However, from Property 3, the optimal functions that
maximize 〈iY ;Xi−1 , gj ⊗ fj〉 are given by gj = g

∗[i]
j , fj =

f
∗[i]
j for all j ≥ 1, which also satisfy the unit-norm and

orthogonality constraints [cf. (16)]. Hence, we conclude that
g
∗[i]
j , f

∗[i]
j are the optimal solutions. Finally, the relation

σ
[i]
j = cov(g

∗[i]
j , f

∗[i]
j ) can be readily obtained from (42) and

(15).



C. Proof of Theorem 1

From Proposition 1, for each i ∈ [n], H
(
f [[i]], g[[i]]

)
is

maximized if and only if
g[[i]] ⊗ f [[i]] = iY ;Xi . (43)

Therefore, Hseq is maximized if (43) holds for all i ∈ [n].
This is further equivalent to, for all i ∈ [n],

g[i] ⊗ f [i] = g[[i]] ⊗ f [[i]] − g[[i−1]] ⊗ f [[i−1]]

= iY ;Xi − iY ;Xi−1 = iY ;Xi|Xi−1 ,

where we have defined g[[0]] = f [[0]] = 0. This establishes
(21).

Similarly, (22) is the only common solution such that each
single H-score in H ?

seq gets maximized, which completes the
proof.

D. Proof of Proposition 5

Note that we have
EPY,Xi

[
g[i](Y )⊗ f [i](X[i])

]
=
〈

1 + iY ;Xi , g
[i](Y )⊗ f [i](X[i])

〉
= 〈1 + iY ;Xi , iY ;Xi|Xi−1〉
= ‖iY ;Xi|Xi−1‖2,

where to obtain the last equality we have used the facts that
〈1, iY ;Xi|Xi−1〉 = 0 and iY ;Xi|Xi−1 = Π

(
iY ;Xi ;FY×FX[i]

)
.

E. Proof of Proposition 7

By definition, for all τ ≥ 1, we have
P←−
X0|
←−
X[M+τ]

= P←−
X0|
←−
X[M]

. (44)

Therefore, we obtain the Markov relation
←−
X0−

←−
X[n−1]−

←−
Xn

for all n > M . As a consequence, from Corollary 2 we have∥∥∥i∆[i]
seq

∥∥∥ =
∥∥∥i←−
X0;
←−
Xi|
←−
X[i−1]

∥∥∥ = 0 for all i > M.

It suffices to establish
∥∥∥i∆[M ]

seq

∥∥∥ > 0. In fact, if
∥∥∥i∆[M ]

seq

∥∥∥ =

0, we obtain the Markov relation
←−
X0 −

←−
X[M−1] −

←−
XM , and

the order of {Xn}n∈Z will be at most M − 1, leading to a
contradiction. Hence, we obtain (30) as desired.

F. Proof of Theorem 2

To obtain (32), it suffices to note that
PX[−l:0](x[−l:0])

= PX−l(x−l)

−1∏
i=−l

PXi+1|X[−l:i](xi+1|x[−l:i])

= PX(x−l)

−1∏
i=−l

PX0|X[−l−i−1:−1]
(xi+1|x[−l:i])

= PX(x−l)

−1∏
i=−l

P
X0|
←−
X[l+i+1]

(←−x−i−1|←−x [−i:l])

= PX(x−l)

l∏
i=1

P
X0|
←−
X[i]

(←−x l−i|←−x [l−i+1:l])

=

[
l∏
i=0

PX(←−xi)

]
·
l∏
i=1

[
1 + i[i]seq(

←−x [l−i:l])
]
,

where to obtain the second equality we have used the
stationarity, and where to obtain the last equality we have
used (29).

Specifically, when ‖iX−l;··· ;X0
‖ = O(ε), we have

i
[i]
seq(
←−x [l−i:l]) = O(ε) for all i ∈ [l], and thus

l∏
i=1

[
1 + i[i]seq(

←−x [l−i:l])
]
− 1

=

l∑
i=1

i[i]seq(
←−x [l−i:l]) + o(ε) (45)

=

l∑
i=1

i∑
j=1

i∆[j]
seq (←−x [l−i:l−i+j]) + o(ε) (46)

=

l∑
j=1

l∑
i=j

i∆[j]
seq (←−x [l−i:l−i+j]) + o(ε) (47)

=

l∑
j=1

l−j∑
i=0

i∆[j]
seq (←−x [i:i+j]) + o(ε) (48)

=

l∑
i=1

l−i∑
j=0

i∆[i]
seq (←−x [j:i+j]) + o(ε) (49)

where (46) follows from (28), and where to obtain (47) we
have changed the order of summations.

G. Proof of Lemma 2

Note that the first statement can be implies by the second
one since〈

i[i]seq(
←−
X[l−i:l]), i

[i′]
seq(
←−
X[l−i′:l])

〉
R′

=

i∑
j=1

i′∑
j′=1

〈
i[j]seq(
←−
X[l−i:l]), i

[j′]
seq (
←−
X[l−i′:l])

〉
R′
.

It remains only to establish the second statement. From
the modal decomposition, we can write

i∆[i]
seq (←−x [j:j+i]) = g[i](←−xj) · f [i](←−x [j+1:j+i]),

i∆[i′]
seq (←−x [j′:j′+i′]) = g[i′](←−xj′) · f [i′](←−x [j′+1:j′+i′]).

Suppose j 6= j′. Then, without loss of generality, we
can assume j < j′. Since R′ is a product distribution and
E
[
g[j](
←−
Xj)

]
= E

[
g[j](
←−
X0)

]
= 0, we have〈

i∆[i]
seq (
←−
X[j:j+i]), i

∆[i′]
seq (

←−
X[j′:j′+i′])

〉
R′

= ER′
[(
g[i](
←−
Xj) · f [i](

←−
X[j+1:j+i])

)
·
(
g[i′](
←−
Xj′) · f [i′](

←−
X[j′+1:j′+i′])

)]
= 0.

Therefore, it remains only to consider the case with j = j′

but i 6= i′. We can assume i < i′ without loss of generality.
Note that since

EP←−
X
j+i′

[
f [i′](←−x [j+1:j+i′−1],

←−
Xj+i′)

]
= 0,

we obtain〈
i∆[i]
seq (
←−
X[j:j+i]), i

∆[i′]
seq (

←−
X[j:j+i′])

〉
R′



= ER′
[(
g[i](
←−
Xj) · f [i](

←−
X[j+1:j+i])

)
·
(
g[i′](
←−
Xj) · f [i′](

←−
X[j+1:j+i′])

)]
= 0.

H. Proof of Proposition 8

For each i ∈ [l], we have
ı̃←−
Xl−i;

←−
X[l+1−i:l]

(←−x [l−i:l])

= log
P←−
X[l−i:l]

(←−x [l−i:l])

P←−
Xl−i

(←−x l−i)P←−X[l+1−i:l]
(←−x [l+1−i:l])

= log
P←−
X[l−i:l]

(←−x [l−i:l])

P←−
X[l−(i−1):l]

(←−x [l−(i−1):l])
− logP←−

Xl−i
(←−x l−i),

which implies that
l∑
i=1

ı̃←−
Xl−i;

←−
X[l+1−i:l]

(←−x [l−i:l])

= logP←−
X[0:l]

(←−x [0:l])−
l∑
i=0

logP←−
Xi

(←−xi) = ı̃←−
X[0:l]

(←−x [0:l]).

Therefore, we have

ı̃←−
X[0:l]

(←−x [0:l]) =

l∑
i=1

ı̃←−
Xl−i;

←−
X[l+1−i:l]

(←−x [l−i:l]) (50)

=

l∑
i=1

ı̃←−
X0;
←−
X[i]

(←−x [l−i:l]), (51)

which gives (37). To obtain (38), note that from (50), we
have
ı̃←−
X[0:l]

(←−x [0:l])

=

l∑
i=1

ı̃←−
Xl−i;

←−
X[l+1−i:l]

(←−x [l−i:l])

=

l∑
i=1

ı̃←−
Xi−1;

←−
X[i:l]

(←−x [i−1:l])

=

l∑
i=1

l−i∑
j=0

ı̃←−
Xi−1;

←−
Xi+j |

←−
X[i:i+j−1]

(←−xi−1,
←−xi+j |←−x [i:i+j−1])

=

l∑
i=1

l−i∑
j=0

ı̃←−
X0;
←−
Xj+1|

←−
X[j]

(←−xi−1,
←−xi+j |←−x [i:i+j−1])

=

l−1∑
j=0

l−j∑
i=1

ı̃←−
X0;
←−
Xj+1|

←−
X[j]

(←−xi−1,
←−xi+j |←−x [i:i+j−1])

=

l−1∑
i=0

l−i∑
j=1

ı̃←−
X0;
←−
Xi+1|

←−
X[i]

(←−xj−1,
←−xi+j |←−x [j:i+j−1])

=

l∑
i=1

l−i∑
j=0

ı̃←−
X0;
←−
Xi|
←−
X[i−1]

(←−xj ,←−xi+j |←−x [j+1:i+j−1]),

where to obtain the third equality we have used the fact that
[cf. (9)]
ı̃←−
Xi−1;

←−
X[i:l]

(←−x [i−1:l])

=

l−i∑
j=0

ı̃←−
Xi−1;

←−
Xi+j |

←−
X[i:i+j−1]

(←−xi−1,
←−xi+j |←−x [i:i+j−1]),

and where to obtain the fourth equality we have used the
stationarity of {Xn}n∈Z.

Finally, (39) and (40) can be obtained by taking expecta-
tions of (37) and (38), respectively, via noting the facts that
E
[
ı̃←−
X0;
←−
X[i]

(
←−
X[l−i:l])

]
= I(
←−
X0;
←−
X[i]) and

E
[
ı̃←−
X0;
←−
Xi|
←−
X[i−1]

(
←−
Xj ,
←−
Xi+j |

←−
X[j+1:i+j−1])

]
= E

[
ı̃←−
X0;
←−
Xi|
←−
X[i−1]

(
←−
X0,
←−
Xi|
←−
X[i−1])

]
= I(
←−
X0;
←−
Xi|
←−
X[i−1]).
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