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Abstract— We propose a general framework to extract fea-
tures for learning problems involving multiple variables. First,
we decompose multivariate dependence into different compo-
nents to obtain the piece relevant to the learning task. Then,
we establish a modal decomposition approach to represent the
component as informative features. We further demonstrate
the algorithm design for extracting such features from real
data, which can incorporate and utilize existing deep feature
extractors. We also present an application of our framework
in learning tasks with side information.

I. INTRODUCTION

Extracting features from data is one of the most fundamen-
tal tasks in machine learning [1]. With the rapid development
of deep learning [2], it is a common practice to extract
features by training deep neural networks, where the learning
objective is often set to a specific task, e.g., classification
or prediction [3]. The effectiveness of such approaches has
also been justified by information-theoretic and statistical
analyses [4], [5]. In particular, it was shown in [5] that,
the dominant dependence structures between X and Y are
captured by deep neural networks that use X to predict Y .

On the other hand, machine learning problems involving
more than two variables have also gained much atten-
tions recently, e.g., multimodal learning [6] and distributed
learning [7]. For such problems, it is usually difficult to
construct a single learning task to extract useful features, due
to the potentially complicated dependence among multiple
variables. As a motivating example, let us consider a learning
task with side information. Specifically, given data variable
X , the goal is to infer Y based on feature extracted from
X and some side information S. Such tasks can appear
in the distributed learning scenarios, where a local node
extracts the feature, and the cloud center conducts inference
based on the extracted feature and some side information.
To guarantee the performance in these tasks, the feature
extracted from X shall capture information about Y that
S cannot provide. Therefore, the feature design depends on
some joint dependence among X , Y , and S, which cannot
be converted to a simple bivariate learning task.

In this paper, our goal is to establish a general framework
for solving such multivariate feature extraction problems. In
particular, we develop a mathematical framework for multi-
variate dependence decomposition, based on the orthogonal
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decomposition of feature spaces. In addition, by decom-
posing joint function into orthogonal modals, we represent
each dependence component as corresponding informative
features. Moreover, we design a novel multivariate feature
extraction algorithm, which can incorporate and make use
of existing deep feature extractors to extract the informative
features. Specifically, we propose a new training objective,
called the nested H-score, which generalizes the H-score [8],
[9] to multivariate scenarios and can also provide orthog-
onality guarantees for extracted features. Furthermore, we
present an application of our framework in designing feature
extraction and inference algorithms, for the learning task with
side information.

II. NOTATIONS

A. Vector Spaces

Given an inner product space with inner product 〈·, ·〉 and
its induced norm ‖ · ‖, we can define the projection and
orthogonal complement as follows.

Definition 1. Give a subspace W of V, we denote the
projection of a vector v ∈ V onto W by

Π (v;W) , arg min
w∈W

‖v − w‖2 . (1)

In addition, we use V �W to denote the orthogonal com-
plement of W in V, viz.,

V�W , {v ∈ V : 〈v, w〉 = 0 for all w ∈W}. (2)

We use “�” to denote the direct sum of orthogonal
subspaces, i.e., V = V1�V2 indicates that V = V1 +V2 and
V1 ⊥ V2. Then we have the following facts.

Fact 1. If V = V1 � V2, then V2 = V � V1. In addition, if
W is a subspace of V, then V = W� (V�W).

Fact 2 (Orthogonality Principle). Given v ∈ V and a
subspace W of V, then w = Π (v;W) if and only if w ∈W

and v − w ∈ V�W. In addition, we have
v = Π (v;W) + Π (v;V�W) .

B. Distribution and Feature Spaces

1) Distribution Space: Given an alphabet Z, we use PZ

to denote the collection of probability distributions supported
on Z, and use relint(PZ) to denote the relative interior of PZ,
i.e., the collection of distributions in PZ that have positive
probability masses.

2) Feature Space: For given Z, we use FZ , {Z →
R} to denote the collection of features (functions) of
Z. Specifically, we use F∅ to represent the collection
of constant features. Given f1, . . . , fk ∈ FZ, for each



i = 1, . . . , k, we denote the multidimensional feature(
z 7→ (f1(z), . . . , fi(z))

T
)

by f[i]. We also denote Λf ,
E
[
f(Z)fT(Z)

]
for feature f : Z→ Rk.

Moreover, given a distribution R ∈ relint(PZ), we define
the inner product on FZ as 〈f1, f2〉 , ER [f1(Z)f2(Z)],
which induces the norm ‖f‖ ,

√
〈f, f〉. We will refer to

the distribution R as the metric distribution.
3) Joint Function: Given alphabets X,Y and a metric

distribution RX,Y ∈ relint(PX×Y), FX×Y is composed
of all joint functions of x and y. In particular, for given
f ∈ FX, g ∈ FY, we use f ⊗ g to denote their product
((x, y) 7→ f(x) · g(y)) ∈ FX×Y, and refer to such features as
rank-one functions. In addition, for given f1, . . . , fk ∈ FX

and g1, . . . , gk ∈ FY, we denote f[k] ⊗ g[k] ,
∑k

i=1 fi ⊗ gi.
Note that by extending each f = (x 7→ f(x)) ∈ FX to

((x, y) 7→ f(x)) ∈ FX×Y, FX can be regarded as a subspace
of FX×Y, with the metric distribution being the marginal
distribution RX of RX,Y . We then denote the orthogonal
complement of FX in FX×Y as

FY|X , FX×Y � FX. (3)
Specifically, we use FX|∅ , F∅×X � F∅ = FX � F∅ to
represent the collection of zero-mean functions on X.

4) Likelihood Ratios: We establish a correspondence be-
tween the distribution space PZ and the feature space FZ by
the likelihood ratio functions.

Definition 2. Given a metric distribution R ∈ relint(PZ),
for each P ∈ PZ, we denote the likelihood ratio function by
`P ;R ∈ FZ with `P ;R(z) , P (z)

R(z) . In addition, we define the
centered likelihood ratio function ˜̀

P ;R ∈ FZ as
˜̀
P ;R(z) ,

P (z)−R(z)

R(z)
, for all z ∈ Z.

When there is no ambiguity about metric distribution R,
we will simply use `P , ˜̀

P to denote `P ;R, ˜̀
P ;R, respectively.

III. FEATURE TRANSITION AND DECOMPOSITION

In this section, we further investigate the relation between
joint functions in FX×Y and the features in FX and FY. For
convenience, we will assume all metric distributions used in
the section take the product form, i.e., RX,Y = RXRY .

A. Transition Operators

Definition 3 (Transition Operators). For given γ ∈ FX×Y,
its associated transition operator T (γ;X,Y) is a mapping
from FX to FY, such that for all f ∈ FX, we have
[τ(f)](y) = ERX

[γ(X, y)f(X)], where we have denoted
τ , T (γ;X,Y).

Given a transition operator τ = T (γ;X,Y), we use τ∗ to
denote the transition operator T (γ;Y,X), referred to as the
transpose (or the Hermitian adjoint) of τ .

Note that the transition operator is an extension of con-
ditional expectation operators [10], which have been shown
useful in analyzing bivariate dependence structure [4]. In-
deed, for any given joint distribution PX,Y , the conditional
expectation operators f 7→ E [f(X)|Y = · ] and g 7→
E [g(Y )|X = · ] are the transition operators T

(
`PX,Y

;X,Y
)

and and its adjoint T
(
`PX,Y

;Y,X
)
, respectively, where we

have set the metric distribution RX,Y = PXPY . As we
will see shortly in our development, this extension is useful
for analyzing multivariate dependence structures, e.g., con-
ditional dependence.

We also have the following fact of transition operators.

Fact 3. The transition operator τ , T (γ;X,Y) is a linear
operator, and is also linear to γ. In addition, for all f ∈ FX

and g ∈ FY, we have 〈τ(f), g〉 = 〈f, τ∗(g)〉 = 〈γ, f ⊗ g〉 .

B. Modal Decomposition

Given a joint function γ ∈ FX×Y, γ is centered if we have
ERY

[γ(x, Y )]+ERX
[γ(X, y)] ≡ 0 for all x ∈ X and y ∈ Y.

Then, we have the following modal decomposition of joint
functions in FX×Y. This decomposition can be regarded as
the singular value decomposition of linear operators, also
known as Schmidt decomposition [11], [12]. A proof of
Proposition 1 is provided in Appendix A.

Proposition 1. For each γ ∈ FX×Y, there exist K ≥ 0,
σ1 ≥ · · · ≥ σK > 0, and features f∗1 , . . . , f

∗
K ∈ FX|∅,

g∗1 , . . . , g
∗
K ∈ FY|∅, such that1 〈f∗i , f∗j 〉 = 〈g∗i , g∗j 〉 = δij for

all i, j = 1, . . . ,K, and

γ(x, y) =

K∑
i=1

σif
∗
i (x)g∗i (y)− ERX,Y

[γ(X,Y )]

+ ERY
[γ(x, Y )] + ERX

[γ(X, y)] . (4)
In particular, if γ is centered, then we have

γ(x, y) =

K∑
i=1

σif
∗
i (x)g∗i (y), (5)

and we refer to the number K as the rank of γ.

C. Spectral Properties

Suppose γ ∈ FX×Y is centered and has modal decom-
position (5). Let τ , T (γ;X,Y). Then, we can show that
f∗i ’s, g∗i ’s are eigenfunctions of operators τ∗ ◦ τ and τ ◦ τ∗,
respectively. In particular, for all f ∈ FX and g ∈ FY, we
have

τ(f) =
K∑
i=1

(σi〈f, f∗i 〉) · g∗i , (6)

τ∗(g) =

K∑
i=1

(σi〈g, g∗i 〉) · f∗i . (7)

Therefore, for each i = 1, . . . ,K, we have τ(f∗i ) = σi ·
g∗i , τ

∗(g∗i ) = σi · f∗i and thus [τ∗ ◦ τ ](f∗i ) = σ2
i · f∗i , [τ ◦

τ∗](g∗i ) = σ2
i · g∗i .

In addition, we have the following property. A proof is
provided in Appendix B.

Property 1. For all i = 1, . . . ,K, we have
f∗i = arg max

fi

‖τ(fi)‖, (8)

1We adopt the Kronecker delta notation

δij =

{
0 if i 6= j,

1 if i = j.



where the maximization is taken over all fi ∈ FX with
‖fi‖ = 1 and 〈fi, f∗j 〉 = 0 for j = 1, . . . , i− 1. Similarly,

(f∗i , g
∗
i ) = arg max

fi,gi

〈γ, fi ⊗ gi〉 (9)

where the maximization is taken over all fi ∈ FX and gi ∈
FY with ‖fi‖ = ‖gi‖ = 1 and 〈fi, f∗j 〉 = 〈gi, g∗j 〉 = 0 for
j = 1, . . . , i− 1.

Moreover, we have the following result on approximating
a joint function by rank-one functions, which is an immediate
corollary of Eckart–Young–Mirsky theorem [13].

Property 2. For all k ≥ 1, f1, . . . , fk ∈ FX, and
g1, . . . , gk ∈ FY, we have∥∥γ − f[k] ⊗ g[k]

∥∥2 ≥
K∑

i=k+1

σ2
i ,

where the inequality holds with equality if and only if
k∑

i=1

fi ⊗ gi =

k∑
i=1

σi(f
∗
i ⊗ g∗i ).

D. Decomposition of Joint Distribution

For any joint distribution PX,Y , with the metric dis-
tribution RX,Y = PXPY , the transition operator τ ,

T
(

˜̀
PX,Y

;X,Y
)

measures the amount of information about
Y that is carried by features in FX, as illustrated by the
following result.

Lemma 1 ([14]). Suppose (X,Y ) ∼ PX,Y , and Z ∼ N(0, 1)
and is independent of X,Y . Then, for all f ∈ FX with ‖f‖ =
1, we have

lim
snr→0+

1

snr
· I
(
f(X) +

Z√
snr

;Y

)
=

1

2
· ‖τ(f)‖2,

where snr represents signal-to-noise ratio, and I( · ; · ) rep-
resents mutual information.

In particular, the modal decomposition of ˜̀
PX,Y

is also re-
ferred to as the modal decomposition of the joint distribution
PX,Y (cf. [4, Proposition 2]). Let the decomposition be

˜̀
PX,Y

=

K∑
i=1

σi · (f∗i ⊗ g∗i ), (10)

then the functions f∗i , g
∗
i correspond to the maximally cor-

related functions in FX and FY, known as Hirschfeld–
Gebelein–Rényi (HGR) maximal correlation functions [15],
[16], [17]. Then, an information-theoretic optimality of f∗i
can be obtained from Property 1 and Lemma 1. Moreover, it
has been shown in [4] that, if X and Y are weakly dependent
and satisfy ∥∥˜̀

PX,Y

∥∥ ≤ ε (11)
for some small ε, then f∗i , g∗i are the most informative
features for a series of inference tasks. In addition, (10) can
also be illustrated as a decomposition of mutual information.

Lemma 2 ([4, Lemma 16]). If PX,Y satisfies (11), then

I(X;Y ) =
1

2

∥∥˜̀
PX,Y

∥∥2
+ o(ε2) =

1

2

K∑
i=1

σ2
i + o(ε2),

where σ1, . . . , σK are defined by the modal decomposition
(10).

Feature
Extractor

X Inference Ŷ

S

f(X)

Fig. 1. Learning With Side Information S

The maximal correlation functions can be effectively ex-
tracted from data via maximizing the H-score [5], [8].

Definition 4. Given f : X → Rk, g : X → Rk, the H-score
H (f, g) is defined as

H (f, g) , E
[
fT(X)g(Y )

]
− (E [f(X)])

T E [g(Y )]

− 1

2
· tr (ΛfΛg) , (12)

where we have defined Λf , E
[
f(X)fT(X)

]
and Λg ,

E
[
g(Y )gT(Y )

]
, respectively.

Since we can equivalently express H (f, g) as

H (f, g) =
1

2

(∥∥˜̀
PX,Y

∥∥2 −
∥∥∥˜̀

PX,Y
− f ⊗ g

∥∥∥2
)
, (13)

the following corollary of Property 2 is immediate.

Corollary 1. Given f : X → Rk, g : Y → Rk, H (f, g) is
maximized if and only if f ⊗ g =

∑k
i=1 σif

∗
i ⊗ g∗i , where

σi, f
∗
i , g
∗
i are given by the modal decomposition (10).

IV. MULTIVARIATE DEPENDENCE DECOMPOSITION

In this section, we introduce a multivariate dependence
decomposition framework, by considering the learning prob-
lem with side information. As shown in Fig. 1, the goal is
to infer the label Y based on extracted feature f(X) and the
side information S.

To begin, let PX,S,Y denote the joint distribution of data
variable X , side information S, and label Y . Throughout
our development, we set the product distribution RX,S,Y ,
PXPS,Y as the metric distributions, and consider the weak
dependence regime with∥∥˜̀

PX,S,Y

∥∥ ≤ ε (14)
for some small ε > 0. In addition, we define P (M)

X,S,Y as

P
(M)
X,S,Y (x, s, y) , PX|S(x|s)PS(s)PY |S(y|s), (15)

which can be regarded as a coupling of PX,S,Y subject to
the Markov relation X − S − Y .

Note that since the side information S has been revealed
during the inference, the extracted feature f(X) shall carry
only the information not included in S. Therefore, the X−S
dependence will not be useful for the inference. To exclude
this dependence component from the joint dependence, we
consider the orthogonal decomposition [cf. Fact 1 and (3)]

FX×S×Y = FX×S � FY|(X×S). (16)
From Fact 2, we can further decompose ˜̀

PX,S,Y
as

˜̀
PX,S,Y

= πM(˜̀
PX,S,Y

) + πC(˜̀
PX,S,Y

), (17)
where we have defined πM(γ) , Π (γ;FX×S) and πC(γ) ,
Π
(
γ;FY|X×S

)
for all γ ∈ FX×S×Y. Then, we have the

following result for the decomposed components, a proof
of which is provided in Appendix C.



Proposition 2. We have πM(˜̀
PX,S,Y

) = ˜̀
PX,S

= ˜̀
P

(M)
X,S,Y

and[
πC(˜̀

PX,S,Y
)
]

(x, s, y) =
PX,S,Y (x, s, y)− P (M)

X,S,Y (x, s, y)

RX,S,Y (x, s, y)
,

where P (M)
X,S,Y is as defined in (15).

Therefore, (17) decomposes the joint dependence between
X and (Y, S), represented as ˜̀

PX,S,Y
, into two orthogo-

nal components: the Markov component πM
(
˜̀
PX,S,Y

)
that

characterizes the dependence between X and S, and the
Conditional dependence component πC

(
˜̀
PX,S,Y

)
that mea-

sures the conditional dependence between X and Y given
S.

Moreover, from (17) we can readily obtain∥∥˜̀
PX,S,Y

∥∥2
=
∥∥πM(˜̀PX,S,Y

)∥∥2
+ ‖πC

(
˜̀
PX,S,Y

)
‖2, (18)

which corresponds to a chain rule of mutual information. To
see this, note that from Lemma 2 and (14) we have∥∥˜̀

PX,S,Y

∥∥2
= 2 · I(X;S, Y ) + o(ε2).

Similarly, since
∥∥˜̀

PX,S

∥∥ ≤ ∥∥˜̀
PX,S,Y

∥∥ ≤ ε, we obtain∥∥πM(˜̀PX,S,Y

)∥∥2
=
∥∥˜̀

PX,S

∥∥2
= 2 · I(X;S) + o(ε2),

Hence, from (18), we have the correspondence between
the conditional dependence component πC

(
˜̀
PX,S,Y

)
and the

conditional mutual information I(X;Y |S):
‖πC

(
˜̀
PX,S,Y

)
‖2 =

∥∥˜̀
PX,S,Y

∥∥2 −
∥∥πM(˜̀PX,S,Y

)∥∥2

= 2 · I(X;Y |S) + o(ε2).

Furthermore, let us define the corresponding transition
operators τJ, τM, τC : FX → FS×Y as

τJ , T
(

˜̀
PX,S,Y

;X, S× Y
)
, (19)

τM , T
(
πM
(
˜̀
PX,S,Y

)
;X, S× Y

)
, (20)

τC , T
(
πC
(
˜̀
PX,S,Y

)
;X, S× Y

)
, (21)

which correspond to the Joint dependence of X and (S, Y ),
the dependence contributed by the Markov distribution
P

(M)
X,S,Y , and the Conditional dependence of X and Y

given S, respectively. Note that since the transition operator
T (γ; ·, ·) is linear to γ, from (17) we obtain the decomposi-
tion

τJ = τC + τM. (22)
In addition, the following theorem demonstrates that the

images of τC and τM are also orthogonal. A proof is provided
in Appendix D.

Theorem 1. For all f ∈ FX, we have τC(f) ∈ FY|S,
τM(f) ∈ FS, and

‖τJ(f)‖2 = ‖τC(f)‖2 + ‖τM(f)‖2. (23)
In addition, we have τ∗C ◦ τM = 0, τ∗M ◦ τC = 0.

Moreover, we can also interpret (23) as a chain rule
of mutual information. To see this, let Z ∼ N(0, 1) be
independent of X,Y, S. Then, it follows from Lemma 1 that
for all f ∈ FX with ‖f‖ = 1, we have

lim
snr→0+

1

snr
· I
(
f(X) +

Z√
snr

;S, Y

)
=

1

2
· ‖τJ(f)‖2,

lim
snr→0+

1

snr
· I
(
f(X) +

Z√
snr

;S

)
=

1

2
· ‖τM(f)‖2.

Therefore, from the chain rule of mutual information
I(U ;S, Y ) = I(U ;S)+I(U ;Y |S), where U , f(X)+ Z√

snr
,

we can readily obtain

lim
snr→0+

1

snr
· I
(
f(X) +

Z√
snr

;Y

∣∣∣∣S)
=

1

2
·
(
‖τJ(f)‖2 − ‖τM(f)‖2

)
=

1

2
· ‖τC(f)‖2. (24)

Therefore, the transition operator τC measures the amount
of additional information about Y carried by features in FX,
when the side information S has been revealed. Moreover,
suppose the modal decomposition of πC

(
˜̀
PX,S,Y

)
is[

πC
(
˜̀
PX,S,Y

)]
(x, s, y) =

K∑
i=1

σif
∗
i (x)g∗i (s, y). (25)

Then, from Property 1, f∗1 , . . . , f
∗
K are the most informative

features in the task of inferring Y with the presence of side
information.

Furthermore, we can interpret the features f∗i , g
∗
i as a

generalization of HGR maximal correlation functions. In
particular, let us define
Cs(f, g) , EPX,S,Y

[f(X)g(S, Y )]− E
P

(M)
X,S,Y

[f(X)g(S, Y )]

for f ∈ FX, g ∈ FS×Y, where P (M)
X,S,Y is as defined in (15).

Then, note that since Cs(f, g) =
〈
f ⊗ g, πC

(
˜̀
PX,S,Y

)〉
, we

have the following corollary of Proposition 1.

Corollary 2. For all i = 1, . . . ,K, we have σi = Cs(f
∗
i , g
∗
i )

and f∗i , g
∗
i correspond to the optimal solution of the opti-

mization problem
(f∗i , g

∗
i ) = arg max

fi,gi

Cs(fi, gi),

where the maximization is taken over all fi ∈ FX and gi ∈
FS×Y with ‖fi‖ = ‖gi‖ = 1 and 〈fi, f∗j 〉 = 〈gi, g∗j 〉 = 0 for
j = 1, . . . , i− 1.

Remark 1. When X and S are independent, we have
P

(M)
X,Y,S = PX|SPS,Y = PXPS,Y . Therefore, f∗i , g

∗
i corre-

spond to the maximal correlation functions of X and (Y, S).
Specifically, when there is no side information (i.e., S is a
constant), f∗i , g

∗
i will be the maximal correlation functions

of X and Y .

V. LEARNING ALGORITHMS

In this section, we demonstrate the practical algorithm de-
sign based on our multivariate feature extraction framework,
where we focus on the illustrating example of learning with
side information.

A. Deep Feature Extraction
Suppose πC

(
˜̀
PX,S,Y

)
has the modal decomposition (25).

Then, the features f∗i , g∗i characterize the conditional inde-
pendence of X and Y given side information S, and thus
are useful for the inference task. To extract such features
from real data, we develop a novel training objective based
on the multivariate dependence decomposition, called nested
H-score. The nested H-score is a multivariate extension of
the H-score [8], [9] and can be computed by a nested network
structure.



In particular, for given λ > 0, features f̄ : X →
Rk̄, ḡ : S→ Rk̄ and f : X→ Rk, g : Y× S→ Rk, we define
the nested H-score HC(f̄ , ḡ, f, g;λ) as

HC(f̄ , ḡ, f, g;λ) ,H (f̄ , ḡ) + λ ·H
([
f̄
f

]
,

[
ḡ
g

])
, (26)

where H (·, ·) is the H-score as defined in Definition 4.
Note that the nested H-score HC is the weighted sum of

two H-scores, where the input features of the two H-scores
form a nested structure. In particular, note that since f̄ and ḡ
are features of X and S, respectively, we can extract X −S
dependence by maximizing the first H-score H (f̄ , ḡ).

Moreover, by applying a two-phase training strategy, the
second H-score can be used to extract the conditional depen-
dence between X and Y given S. Specifically, in the first
phase, we maximize H (f̄ , ḡ) such that f̄ , ḡ have captured all
dependence between X and S. Next, in the second phase, we

fix f̄ , ḡ, and maximize the second H-score H

([
f̄
f

]
,

[
ḡ
g

])
over only f and g. Then, the optimal f and g shall extract
the dependence structure between X and (S, Y ) that is not
captured by f̄ and ḡ, which corresponds to the conditional
dependence of X and Y given S.

The following theorem demonstrates that, directly optimiz-
ing the nested H-score HC provides the same solution as this
two-phase strategy. A proof is provided in Appendix E.

Theorem 2. Let K̄ denote the rank of ˜̀
PX,S

. Given k ≥ 1,
k̄ ≥ K̄, f̄ : X → Rk̄, ḡ : S → Rk̄, and f : X → Rk, g : Y ×
S → Rk, for all λ > 0, the H-score HC(f̄ , ḡ, f, g;λ) is
maximized if and only if

f̄ ⊗ ḡ = ˜̀
PX,S

, (27a)

f ⊗ g =

k∑
i=1

σi (f∗i ⊗ g∗i ) . (27b)

From Theorem 2, the learned feature f = f1, . . . , fk
lie in the subspace spanned by f∗1 , . . . , f

∗
k . However, un-

like f∗1 , . . . , f
∗
k that are orthogonal and ordered by their

informativeness (cf. Property 1 and Lemma 1), f1, . . . , fk
can take any collection of k linearly independent features
in the subspace. To guarantee that the extracted feature f
preserve the order and orthogonality structure as f∗i ’s, we
can again apply the nested trick. To this end, we define the
orthogonalized nested H-score H ⊥

C , such that for f̄ : X →
Rk̄, ḡ : Y → Rk̄ and f = (f1, . . . , fk)T : X → Rk, g =
(g1, . . . , gk)T : Y× S→ Rk,

H ⊥
C (f̄ , ḡ, f, g) ,

k∑
i=0

H

([
f̄
f[i]

]
,

[
ḡ
g[i]

])
,

where we have defined
[
f̄
f[0]

]
, f̄ ,

[
ḡ
g[0]

]
, ḡ.

Note that the orthogonalized nested H-score H ⊥
C is related

to the nested H-score HC via

H ⊥
C (f̄ , ḡ, f, g) =

1

k

k∑
i=1

HC(f̄ , ḡ, f[i], g[i]; k). (28)

Hence, by applying Theorem 2 to all HC(f̄ , ḡ, f[i], g[i]; k),
i = 1, . . . , k, we can readily obtain the following result.

Corollary 3. Given f̄ : X → Rk̄, ḡ : S → Rk̄ with k̄ ≥ K̄,
and f : X→ Rk, g : Y× S→ Rk, the orthogonalized nested
H-score H ⊥

C (f̄ , ḡ, f, g) is maximized if and only if
f̄ ⊗ ḡ = ˜̀

PX,S
, (29a)

fi ⊗ gi = σi (f∗i ⊗ g∗i ) , i = 1, . . . , k. (29b)

Remark 2. From Remark 1, when we set the side informa-
tion S to a constant, we can learn the maximal correlation
functions of X and Y by maximizing H ⊥

C (0, 0, f, g).

Remark 3. By introducing monotonic mappings, we can
construct functions of f̄ , ḡ, f, g that satisfy the same property
as demonstrated in Corollary 3, i.e., that can be used as the
training objective. For example, for all c0, . . . , ck > 0, it can
be verified that the function

k∑
i=0

exp

(
ci ·H

([
f̄
f[i]

]
,

[
ḡ
g[i]

]))
is maximized if and only if (29) holds.

To compute the orthogonalized nested H-score H ⊥
C , we

design the nested network structure as illustrated in Fig. 2,
where we have used the “++” symbol to indicate concatena-
tion of two vectors, we have v1 ++v2 , [ v1v2 ] for two column
vectors v1, v2. In addition, each gray block in the figure
represents a deep feature extractor with trainable parameters.
The architectures of these feature extractors can be chosen
according to the data type. Then, the features f̄ , ḡ, f, g are
learned by training the parameters in these deep feature
extractors to maximize H ⊥

C .

B. Inference

First, we have the following result on the posterior distri-
bution PY |X,S . A proof is provided in Appendix F.

Theorem 3. We have
PY |X,S(y|x, s)

= PY |S(y|s)

(
1 +

K∑
i=1

σif
∗
i (x)g∗i (s, y)

)
+ o(ε), (30)

where σi, f∗i , g
∗
i are as defined in (25).

Note that the posterior distribution depends on x only
through f∗i (x), i = 1, . . . ,K. Hence, the K-dimensional
feature f∗[K] = (f∗1 , · · · , f∗K)T is a sufficient statistic of
X for the side information inference problem. Then, the
corresponding MAP (maximum a posteriori) estimation for
Y can be expressed as

ŷMAP(x, s) = arg max
y∈Y

PY |X,S(y|x, s). (31)

In practical learning tasks, due to the computation or
communication constraints, it may happen that the feature
extracted from X is constrained to have only some k < K
dimensions. In such cases, we cannot directly use sufficient
statistic f∗[K] and apply MAP estimation. Instead, we can
approximate the posterior distribution PY |X,S(y|x, s) by

P
(k)
Y |X,S(y|x, s) , PY |S(y|s)

(
1 +

k∑
i=1

σif
∗
i (x)g∗i (s, y)

)
,
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Fig. 2. Nested neural network structure for learning the features f∗i , g
∗
i , i = 1, . . . , k [cf. (25)], where “++” denotes the concatenation operation of two

vectors. Each gray block represents a deep feature extractor with trainable parameters.

which is composed of the top-k modals of the conditional
dependence. Then, from Corollary 3, we have

P
(k)
Y |X,S = PY |S(y|s) · (1 + f(x)⊗ g(s, y)) , (32)

where f, g are k-dimensional features of X and (S, Y )
learned from maximizing the nested H-score HC (or H ⊥

C ).
Therefore, we can use (32) as the implementation for

inference, where PY |S can be obtained by a discriminative
model that predicts Y from side information S.

APPENDIX

A. Proof of Proposition 1
Let us define γ̃ ∈ FX×Y as

γ̃(x, y) , γ(x, y) + ERX,Y
[γ(X,Y )]

− ERY
[γ(x, Y )]− ERX

[γ(X, y)] .
It can be verified that γ̃ is centered, i.e., for all x ∈ X and
y ∈ Y we have ERX

[γ̃(X, y)] + ERY
[γ̃(x, Y )] = 0, which

is also equivalent to ERX
[γ̃(X, y)] = ERY

[γ̃(x, Y )] = 0.
Then, from the Schmidt decomposition [11] of γ̃, there

exist K ≥ 0, σ1 ≥ · · · ≥ σK > 0, f∗1 , . . . , f
∗
K ∈ FX, and

g∗1 , . . . , g
∗
K ∈ FY, such that 〈f∗i , f∗j 〉 = 〈g∗i , g∗j 〉 = δij for all

i, j = 1, . . . ,K and

γ̃(x, y) =

K∑
i=1

σif
∗
i (x)g∗i (y). (33)

It remains only to show that f∗i ∈ FX|∅, g
∗
i ∈ FY|∅, i =

1, . . . ,K. To see this, note that from (33) we have, for each
i = 1, . . . ,K,

ERXRY
[γ̃(X,Y )g∗i (Y )] =

K∑
j=1

σj · ERX

[
f∗j (X)

]
· 〈g∗j , g∗i 〉

=

K∑
j=1

σj · ERX

[
f∗j (X)

]
· δij

= σi · ERX
[f∗i (X)] .

In addition, note that
ERXRY

[γ̃(X,Y )g∗i (Y )] =
∑
y∈Y

RY (y)g∗i (y) · ERX
[γ̃(X, y)]

= 0.
Therefore, we obtain ERX

[f∗i (X)] = 0, i.e., f∗i ∈ FX|∅.
Similarly, we have g∗i ∈ FY|∅, for all i = 1, . . . ,K.

B. Proof of Property 1

We first establish (8). For all i = 1, . . . ,K, since
〈fi, f∗j 〉 = 0 for j = 1, . . . , i− 1, from (6) we have

τ(fi) =

K∑
j=i

(σi〈fi, f∗i 〉) · g∗i .

Therefore, we have∥∥τ(fi)
∥∥2

=

K∑
j=i

(
σj〈fi, f∗j 〉

)2 ≤ σ2
i

K∑
j=i

〈fi, f∗j 〉2

≤ σ2
i ‖fi‖2 = σ2

i , (34)
where we have used the fact that 〈f∗i , f∗j 〉 = 〈g∗i , g∗j 〉 = σij ,
and where all inequalities hold with equality if fi = f∗i .

Similarly, to establish (9), note that for all i = 1, . . . ,K
we have

〈γ, fi ⊗ gi〉 = 〈τ(fi), gi〉 ≤ ‖τ(fi)‖ · ‖gi‖
≤ σi · ‖fi‖ · ‖gi‖
= σi,

where the first equality follows from Cauchy–Schwarz in-
equality, and the second inequality follows from (34). In
addition, it can be verified that all inequalities hold with
equality if fi = f∗i and gi = g∗i .



C. Proof of Proposition 2

The relation ˜̀
PX,S

= ˜̀
P

(M)
X,S,Y

can be directly

verified from definition. To establish πM(˜̀
PX,S,Y

) =

Π
(

˜̀
PX,S,Y

;FX×S

)
= ˜̀

PX,S
, from Fact 2, it suffices to show

that (˜̀
PX,S,Y

− ˜̀
PX,S

) ⊥ FX×S.
To this end, note that since
˜̀
PX,S,Y

(x, s, y)− ˜̀
PX,S

(x, s)

=
PX,S,Y (x, s, y)− P (M)

X,S,Y (x, s, y)

RX,S,Y (x, s, y)

=
PX,S,Y (x, s, y)− PX|S(x|s)PS(s)PY |S(y|s)

RX,S,Y (x, s, y)
,

for all f ∈ FX×S, we have〈
˜̀
PX,S,Y

− ˜̀
PX,S

, f
〉

=
∑

x∈X,s∈S,y∈Y

PX,S,Y (x, s, y)f(x, s)

−
∑

x∈X,s∈S,y∈Y

PX|S(x|s)PS(s)PY |S(y|s) · f(x, s)

= EPX,S
[f(X,S)]− EPX,S

[f(X,S)]

= 0.

Finally, the expression of πC
(
˜̀
PX,S,Y

)
can be obtained by

using the fact πC
(
˜̀
PX,S,Y

)
= ˜̀

PX,S,Y
− πM(˜̀

PX,S,Y
) =

˜̀
PX,S,Y

− ˜̀
PX,S

.

D. Proof of Theorem 1

Suppose the modal decomposition of πC
(
˜̀
PX,S,Y

)
is[

πC
(
˜̀
PX,S,Y

)]
(x, s, y) =

K∑
i=1

σif
∗
i (x)g∗i (s, y).

We then prove that g∗i ∈ FY|S, i = 1, . . . ,K. To this end,
it suffices to show that for each g ∈ FS, we have 〈g∗i , g〉 =
0 for each i = 1, . . . ,K. Indeed, since πC

(
˜̀
PX,S,Y

)
∈

FY|(X×S), we have

0 =
〈
f∗i ⊗ g, πC

(
˜̀
PX,S,Y

)〉
=

K∑
j=1

σj · 〈f∗i , f∗j 〉 · 〈g, g∗j 〉

= σi · 〈g, g∗i 〉.
Therefore, for all f ∈ FX, we have

τC(f) =

K∑
i=1

(
σi
〈
f, f∗i

〉)
· g∗i ∈ FY|S.

Similarly, suppose the modal decomposition of ˜̀
PX,S

is

˜̀
PX,S

=

K̄∑
i=1

σ̄i
(
f̄∗i ⊗ ḡ∗i

)
,

where f̄∗1 , . . . , f̄
∗
K̄
∈ FX, ḡ∗1 , . . . , ḡ

∗
K̄
∈ FS. Then, for all

f ∈ FX, we have

τM(f) =

K̄∑
i=1

(
σ̄i
〈
f, f̄∗i

〉)
· ḡ∗i ∈ FS.

Hence, for each f ∈ FX, we have τC(f) ∈ FY|S, τM(f) ∈
FS, which implies that

〈τC(f), τM(f)〉 = 0. (35)
As a result, (23) follows immediately from (22) and (35).

Finally, note that for all f ∈ FX, we have
‖τ∗C ◦ τM(f)‖2 = ‖τ∗C(τM(f))‖2

= 〈τ∗C(τM(f)), τ∗C(τM(f))〉
= 〈τM(f), τC(τ∗C(τM(f)))〉
= 0,

where the last equality follow from the facts that τM(f) ∈ FS

and τC(τ∗C(τM(f))) ∈ FY|S.
Hence, we have τ∗C ◦ τM = 0. Similarly, we can show that

τ∗M ◦ τC = 0.

E. Proof of Theorem 2

We first introduce a useful lemma.

Lemma 3. For all k̄, k ≥ 1 and f̄ : X → Rk̄, ḡ : S → Rk̄,
f : X→ Rk, g : Y× S→ Rk, we have

H

([
f̄
f

]
,

[
ḡ
g

])
=

1

2
·
(∥∥˜̀

PX,S,Y

∥∥2

−
∥∥∥˜̀

PX,S
− f̄ ⊗ ḡ − f ⊗ h̄

∥∥∥2

−
∥∥∥πC(˜̀PX,S,Y

)
− f ⊗ h

∥∥∥2)
,

where we have defined h̄ , (h̄1, . . . , h̄k)T, h ,
(h1, . . . , hk)T, and where for each i = 1, . . . , k, h̄i and
hi are defined as h̄i , Π (gi;FS) and hi , Π

(
gi;FY|S

)
,

respectively.

Proof of Lemma 3. From the definition of H-score, we have

H

([
f̄
f

]
,

[
ḡ
g

])
=

1

2
·
(∥∥˜̀

PX,S,Y

∥∥2 −
∥∥∥˜̀

PX,S,Y
− f̄ ⊗ ḡ − f ⊗ g

∥∥∥2
)
.

Therefore, it suffices to prove that∥∥∥˜̀
PX,S,Y

− f̄ ⊗ ḡ − f ⊗ g
∥∥∥2

=
∥∥∥˜̀

PX,S
− f̄ ⊗ ḡ − f ⊗ h̄

∥∥∥2

+
∥∥∥πC(˜̀PX,S,Y

)
− f ⊗ h

∥∥∥2

.

(36)
From FS×Y = FS � FY|S, for each i = 1, . . . , k, we

have gi = h̄i + hi. Therefore, we obtain g = h̄ + h and
f⊗g = f⊗ h̄+f⊗h. We then verify that f⊗h ∈ FY|(X×S).
To see this, for each f̂ ∈ FX×S, note that
〈f ⊗ h, f̂〉

=

k∑
i=1

∑
x∈X

∑
s∈S,y∈Y

PX(x)PS,Y (s, y)fi(x)hi(y, s)f̂(x, s)

=
∑

s∈S,y∈Y

PS,Y (s, y)hi(y, s) ·

(∑
x∈X

PX(x)fi(x)f̂(x, s)

)
=

∑
s∈S,y∈Y

PS,Y (s, y)hi(y, s) · EPX

[
fi(X)f̂(X, s)

]
=

∑
s∈S,y∈Y

PS,Y (s, y)hi(y, s)ti(s)

=

k∑
i=1

〈hi, ti〉 = 0,

where we have defined ti : s 7→ EPX

[
fi(X)f̂(X, s)

]
, and

where the last equality follows from the fact that hi ∈ FY|S
and ti ∈ FS.



Finally, to establish (36), note that∥∥∥˜̀
PX,S,Y

− f̄ ⊗ ḡ − f ⊗ g
∥∥∥2

=
∥∥∥πM(˜̀PX,S,Y

)
+ πC

(
˜̀
PX,S,Y

)
− f̄ ⊗ ḡ − f ⊗ h̄− f ⊗ h

∥∥∥2

=
∥∥∥˜̀

PX,S
− f̄ ⊗ ḡ − f ⊗ h̄+ πC

(
˜̀
PX,S,Y

)
− f ⊗ h

∥∥∥2

=
∥∥∥˜̀

PX,S
− f̄ ⊗ ḡ − f ⊗ h̄

∥∥∥2

+
∥∥∥πC(˜̀PX,S,Y

)
− f ⊗ h

∥∥∥2

,

where to obtain the last equality we have used the fact that〈
˜̀
PX,S

− f̄ ⊗ ḡ − f ⊗ h̄, πC
(
˜̀
PX,S,Y

)
− f ⊗ h

〉
= 0 since(

˜̀
PX,S
−f̄⊗ḡ−f⊗h̄

)
∈ FX×S and

(
πC
(
˜̀
PX,S,Y

)
−f⊗h

)
∈

FY|(X×S).

Proceeding to our proof of Theorem 2, note that from (13)
we have

H (f̄ , ḡ) =
1

2

(∥∥˜̀
PX,S

∥∥2 −
∥∥∥˜̀

PX,S
− f̄ ⊗ ḡ

∥∥∥2
)
. (37)

Therefore, from (2), H (f̄ , ḡ) is maximized if and only if
f̄ ⊗ ḡ = ˜̀

PX,S
. (38)

Similarly, from Lemma 3, H

([
f̄
f

]
,

[
ḡ
g

])
is maximized if

and only if
f̄ ⊗ ḡ + f ⊗ h̄ = ˜̀

PX,S
(39)

f ⊗ h =

k∑
i=1

σi(f
∗
i ⊗ g∗i ), (40)

where h̄ , (h̄1, . . . , h̄k)T, h , (h1, . . . , hk)T, and where for
each i = 1, . . . , k, h̄i and hi are defined as h̄i , Π (gi;FS)
and hi , Π

(
gi;FY|S

)
, respectively.

It is easy to verify that there exist f̄ , ḡ, f, g such that
(38)–(40) hold simultaneously. As a result, the two H-scores

H (f̄ , ḡ) and H

([
f̄
f

]
,

[
ḡ
g

])
are both maximized if and

only if we have (38)–(40).
We then show that (38)–(40) are equivalent to (27). To

see this, first note that (38) is equivalent to (27a). Moreover,
from (38) and (39) we have f ⊗ h̄ = 0, and thus from (40)
we obtain

f ⊗ g = f ⊗ h+ f ⊗ h̄ = f ⊗ h =

k∑
i=1

σi(f
∗
i ⊗ g∗i ),

which is (27b). In addition, from (27b) we have gi ∈ FY|S
and thus h̄ = 0.

Finally, since HC is a weighted sum of these two H-scores,
HC is maximized if and only if we have (27).

F. Proof of Theorem 3

Note that from Proposition 2, we have
PX,S,Y (x, s, y)− PX|S(x|s)PS(s)PY |S(y|s)

= PX(x)PS,Y (s, y) ·
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y),

which implies that
PY |X,S(y|x, s)

= PY |S(y|s) ·
(

1 +
PX(x)PS(s)

PX,S(x, s)
·
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y)

)

= PY |S(y|s) ·
(

1 +
1

`PX,S
(x, s)

·
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y)

)
= PY |S(y|s) ·

(
1 +

[
πC
(
˜̀
PX,S,Y

)]
(x, s, y)

)
+ o(ε).

To obtain the last equality we have used the fact that
1

`PX,S
(x, s)

·
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y)

=
1

1 + ˜̀
PX,S

(x, s)
·
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y)

=
(

1− ˜̀
PX,S

(x, s)
)
·
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y) + o(ε),

=
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y) + o(ε),

since [cf. (14)]
˜̀
PX,S

(x, s) = O(ε),
[
πC
(
˜̀
PX,S,Y

)]
(x, s, y) = O(ε).

Finally, (30) is obtained by using the decomposition (25).
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