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Our Interest/Belief on Deep Learning

Applications of DNN in engineering problems are different

from NLP/Image Processing

Limited training;

Domain knowledge and structures, do not re-learn what is

known;

Guarantees;

Parameterized optimal solutions;

Targetted performance enhancement (performance comparison

table is often not the right way. )



The Role of Information Theory

Information theoretic quantities, entropy, mutual information,

K-L divergence, etc., are pleasant concepts, and therefore

used in many learning problems as a part of the loss function.

The operational meanings for information-theoretic quantities:

the coding theorems, ”max rate with Pe → 0 as n → ∞”.

The current operational meaning of IT quantities in ML: when

used in the loss function, the performance is sometimes better.
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Need Some Re-Thinking

The carrier of information: bits −→ real-valued features

f (x), 1n
∑n

i=1 f (xi ).

Without coding, every step of the processing strictly loses

information.

Have to talk about semantics, which Shannon didn’t.

Quantify the meaning of a feature: what binary question does

it answer?

Naturally a geometric concept.
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The Plan for This Short Talk

Our attempt for new information-metric for real-valued

features f : X → R,

A Hilbert space ⟨f1, f2⟩ = E[f1(X) · f2(X)] and the norm,

subspace, angle, and projection based on these.

The operational meanings: all learning algorithms try to learn

optimal things with induced metrics.

Examples of what we can do with this geometric language.

A few steps we need to change our thinking
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Example: The Story of Reservoir Computing

In general, we need to generate

a rich set of time sequences

driven by the inputs.

Typical implementation: like a

state space model

q[n + 1] = σ(wres · q[n] +Win · x [n])

y [n] = Wout · q[n]

Only train the input/output

weights.



Example: The Story of Reservoir Computing

In general, we need to generate

a rich set of time sequences

driven by the inputs.

Typical implementation: like a

state space model

q[n + 1] = σ(wres · q[n] +Win · x [n])

y [n] = Wout · q[n]

Only train the input/output

weights.



Example: The Story of Reservoir Computing

In general, we need to generate

a rich set of time sequences

driven by the inputs.

Typical implementation: like a

state space model

q[n + 1] = σ(wres · q[n] +Win · x [n])

y [n] = Wout · q[n]

Only train the input/output

weights.



Example: The Story of Reservoir Computing

In general, we need to generate

a rich set of time sequences

driven by the inputs.

Typical implementation: like a

state space model

q[n + 1] = σ(wres · q[n] +Win · x [n])

y [n] = Wout · q[n]

Only train the input/output

weights.



The Equalization Problem

The symbol detection in ISI channel.

Why is this difficult for conventional solutions?

Without additive noise, reduces to deconvolution

If the interference were Gaussian, L2 estimation is optimal
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(Good) Blackboxes Work, Sort of.

Train a network, with Y [n] as input and try to predict X [n]

(sorry for the convention).

Reservoir computing works quite well.

There is an issue of error floor, performance gap to the

optimal at high SNR: the deconvolution didn’t work too well.
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Moving towards Understanding

Performance metrics might be misleading, both learning

performance metrics and communication metrics.

Weak interference can be handled with

classical approaches.

Strong interference occurs rarely.

Switching is not hard for engineers.

Using the learning-based method: can we resolve the

interference?

Wish list: training costs, use of structure, prior statistical

knowledge, change with parameters, optimality, ...
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Hansel and Gretel’s Bread Crumbs

Try deconvolution (switch to conventional methods when

needed. ) Minmax vs. Average

min Eh

[∥∥∥δ[·]− h ∗ ĥ−1
res

∥∥∥2] ⇐⇒ minEh

[∥∥∥h ∗ (h−1 − ĥ−1
res))

∥∥∥2]
L2 distance

minEh

[∥∥∥h−1 − ĥ−1
res

∥∥∥2]
Inverse z-transform by partial fraction expansion

minEα

[∥∥∥∥ 1

1− αz−1
− ĥ−1

res

∥∥∥∥2
]
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A Problem We Can Do

Simplest reservoir: no connection, no non-linear.



Specific Functional Approximation

Need to choose β1, . . . , βM , a random

choice of the target α with a given prior

pα,

min
βM
1

Epα

∥∥∥∥∥
(

1

1− αz−1

)
−

M∑
i=1

w∗
i ·

(
1

1− βiz−1

)∥∥∥∥∥
2




What We Can See From the Solution?

Why is reservoir a good idea? If βi = α, we have no error.

The scaling law of performance (training loss), how does

∥error∥2 decrease with M: O(M−4).

Optimal reservoir size with limited training: standard

generalization error analysis.

How to place β’s? Randomly with density ∝ 1

(1−β2)
5
4
if pα is

uniform.

When we know pα(3GPP/LTE), easily fold in the prior

knowledge.

With all these, the error floor is pushed down.
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What is Hidden in the Black Box Solution?

The value of connecting the neurons?

q[n + 1] = σ(Wres · q[n] +Win · x [n])

y [n] = Wout · q[n]

The issue of L2 loss: channel inversion to all-pass filter.

The value of having an activation function?

A parameterized optimal solution: the topic of a different talk.
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Concluding Remarks

Apply ML to engineering problems, maybe I have a narrow

view here.

Side information, structure of the problem, constraints:

separate what we want to learn and what we don’t.

Do Not always want a more complex design.

Either performance metric does not tell the full story.

Using non-linear units.


